
AD-753 115

SUMMARY OF THE SYSTEM, SUPPORT, AND
SPECIAL-PURPOSE SOFTWARE USED BY THE
SANGUINE SIMULATION FACILITY

Ira Richer, et al

Massachusetts Institute of Technology

I

Prepared for:

Electronic Systems Division
Department of the Navy

18 September 1972

DISTRIBUTED BY:

Nationl Technical Informtion Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Technical Note 1972-31

!. Richer

Summary of the System, Support, D.A. McNeill

and Special-Purpose Software

Used by the
Sanguine Simulatioi, Facility

18 Stptember 1972

'repaxed for the Depatrtment o3 the Navy
undrr 1ec tronic Syqterna DiviUsn f.ia tract F'I96Z17-3(;.0002 by

Lincoln Laboratory
RIASSA(ItUSEMSr INSTITl T. OF TECHNOLOCY

DDC

ti i..•ai.-'. -',-..•'-..... "~ ina •ea.* hm~ . vaaI im ac-aW

,.- vi i (C.p.at a2) . REPCRT SECURITY CLASSIPICATIONi

Unclassified
Lincoln Laboratory. M. I.T. GROUP

None

3. REPORT TITLE

Summary of the System, Support, and Special-%rpose Software Used by the Sanguine Simulation Facility

4. DESCRIPTIVE NOTES (21p1 olfrapmt andhmc/uldve det*)

Technical Note
5. AUTHOR(S) (Loat amn% first ama, Inudal)

Richer, Ira and McNeill, Dale A.

6. REPORT DATE To. TOTAL NO. OF PAGES 176. NO. OF REFS

18 September 1972 140 0

U. ORIGINATOR'S REPORT NUMUER(S)

G.. CONTRACT OR GRANT NO. F19628-73-C-0002 Technical Note 1972-31

b. PROJECT NO. 1508A lb. OTHER REPORT NOIS) (Ally OU~enumallhaa hA~t may be

aaaidnod thia mpof)

C. ESD-TR-72-234
d.

II. AVAILABILITY/LIMITATION NOTICES A ' Owd W forV0110 r18&eles8e0 d1strIbution unlimited.

-_0 -f anive I 2tie

I1. SUPPLEMENTARY NOTES 12. SPONSORINO MILITARY ACTIVITY

None Department of the Navy

IS. ABSTRACT

A computer facility, consisting of a Varian 620/i digital computer.
associated peripherals, and extensive software, has been developed for
analyzing and simulating communications systems. The software includes
an operating system, general-purpose subroutines, and simulation pro-
grams. This report describes the software in detail, serving as a handbook
for potential users and as a guide for setting up similar facilities.

14. KEY WORDS

Sanguine ELF receiver
Varian 620/i software

*H-180 UNCLASSIFIED
Security Classification

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

-' SUMMARY OF THE SYSTEM, SUPPORT,

AND SPECIAL-PURPOSE SOFTWARE

USED BY THE SANGUINE SIMULATION FACILITY

I. RICHER
D. A. NcNEILL

Group6

TECHNICAL NOTE 1972-31

18 SEPTEMBER 1972

Approved for public releaseu distribution unlimitedo.

996*90*09000

LEXINGTON MASSACHUSETTS

tle work reported in this document was performed at Lincoln Laboratory,
a cunter for research operated by Massachusetts Institute of Technology.

"Ite work was ponsored by the Depeftent of th Navy under Air Force
Contract F19628-73-C-0002.

This report may be reproduced to satisfy needs of U.S. Government ancies.

ABSTRACT

A computer facility, consisting of a Varian 620/i digital computer,

associated peripherals, and extensive software, has been developed for

analyzing and simulating communication systems. The software includes

an operating system, general-purpose subroutines, and simulation programs.

This report describes the software in detail, serving as a handbook for
potential users and as a guide for setting up similar facilities.

Accepted for the Air Force
Nicholas A. Orsini, Lt. Col., USAF
Chief, Lincohl Laboratory Project Office

iii

TABLE OF CONTENTS

I. INTRODUCTION 1

II. HARDWARE 2

III. COMPUTER OPERATING SYSTEM 3

A. DEBUG Package and Magnetic-Tape Routines 3

B. Additions and Modifications to DEBUG Package and
Magnetic-Tape Routines 53

C. Text Editor 69

D. Additional Command for Text Editor - 'o' 76

E. Additional Command for Text Editor - 'x' 77

F. Differences Between the Varian Supplied Assembler
and the Version Used at MIT/LL 78

G. Tape Splice 82

H. Tape Duplicate 84

I. Tape Copy 86

J. List/Dump 87

IV. GENERAL-PURPOSE SUBROUTINES 89

A. Plotting 0

B. Mean and Variance 1,17

C. Amplitude Probability Density i19

D. FFT Spectrum Averaging 121

E. Miscellaneous 123

V. SIMULA rION PROGRAMS 124

A. DEBUG Commands for Use with the Simulation-
Control Program 124

B. Simulation Tape Editor 127

C. Simulation Tape Splicer 130

D. Miscellaneous 132

Preceding page blank
v

I. INTRODUCTION

In the process of developing and analyzing an ELF receiver, a simula-

tion facility was developed consisting of a Varian 620/i computer, associated

peripherals, and extensive software. The software was designed to permit
rapid extraction, analysis, and display of pertinent data. Although our intent

was to write software for the simulation project, the nature of the tasks
encountered required that much general-purptse software be written. This

software proves to be useful and adaptable to a wide variety of systems, both

within and outside the field of communications. This report is a collection
of memos describing the software in detail an•i is primarily written for those

people who plan to use it or to set up a similar simulation facility.

Except for the assembler and some of the mathematics subroutines,

all programs were written at MIT Lincoln Laboratory. The Varlan assembler
has been extensively modified for our purposes, and the mathematics sub-
routines were thoroughly checked and corrected if necessary. All the software

is written in assembly language to minimize storage required by programs

and processing time.

Section H lists the major hardware components in the simulation

facility. Section III de ;ribes the computer operating system; update memos
indicating changes and additions to the programs follow the original memos.

Section IV details the general-purpose subroutines available, and Section V

describes the specialized routines developed for the simulation program.

I. Richer wrote the DEBUG package, magnetic-tape routines, and the
text editor. D. McNeill wrote the plotting package. Other major contribu-
tions are identified in the text. In addition, R. Teoste provided major
contributions toward the framework of the simulation programs, and both he
and C. Cappello wrote many of the simulation support routines.

Preceding page blank

II. HARDWARE

The software was written specifically for the hardware configuration

at MIT Lincoln Laboratory, minor modifications may be necessary for

operation on other configuration. Listed below are the mar components of

the simulation facility:

a) Varian 620/i digital computer with 32,768 (16-bit) words of
memory, one accumulator, two index registers, hardware
multiply and divide, direct-memory-access, "buffer interlace
controller" (to permit block data transfer between memory and
I/O devices), and 8 priority interrupts. Limitations on the
Varian hardware permit block data transfers between a
peripheral device and only the lower half of core; for that
reason, DEBUG and the tape handling routines are resident in
core from 315008-377778.

b) Teletype I/O terminal (model KSR 35 - 10 cps).

c) Computek CRT graphic display I/O terminal with a specially

built 16-bit parallel interface. The interface was modified to
accept a command so that hard copies can be obtained under
program control.

d) Tektronix hard copy unit (for copies of CRT displays).

e) 4 PEC 9-track magnetic tape drives (25 ips, 800 bpi) operated
with one controller. Modifications were made to enable the
CPU to sense the tape drives online (see Section III-B).

f) Remex paper tape reader (300 cps).

g) Lincoln Laboratory built real-time clock (counts memory cycles
for timing programs).

h) Hewlett-Packard D/A converter and X-Y plotter. This is an
offline package for graphing data using paper tapes generated
by the plotting subroutines.

Listings are obtained from high speed line printers at MIT Lincoln

-. aboratory's IBM 360 facility.

2

III. COMPUTER OPERATING SYSTEM

A. DEBUG Package and Magnetic-Tape Routines

1. Introduction

DEBUG, an "operating environment" for the Varian 620/i, greatly
facilitates the loading and dumping of programs (or data) from magnetic

tape, the examination and modification of the contents of registers , and

the testing and correcting of programs. Some particularly useful features

of DEBUG are the ability to instruction-step through a program, the ability

to interrupt a program in execution, and the ability to type out the contents

of registers in a semi-symbolic format.

DEBUG is operated entirely from the teletype console. With DEBUG

in operation, the user should consider the teletype to be his computer con-
sole: any operation that could be performed from the central-processor con-

sole (except for setting sense switches) can now be performed from the

teletype. The purpose of DEBUG, in addition to providing many functions not

available at the central-processor console, is to simplify the usual console

operations.

There are two basic states of DEBUG: either a register is open or all
registers are closed (i. e., i'o register is open). By an "open register" we

mean the register currently being operated upon. Only one register can be

open at a time. An instruction to DEBUG is either an argument followed by

a command or just a command. The argument is an octal number (positive

or negative) which represents the contents of a register or the address of a

memory register. The command, always given by a single character, initiates

the desired action, (or causes an error message to be typed). For example,

the instruction

100,

means enter the argument 100 and prepare to accept the next argument.

The term "register" is used to denote one of the core memory locations, one
of the five "hardware" registers (A, B, X, program counter, and overflow indi-
cator), or one of the special purpose registers provided by DEBUG (J, K, N, and T)

3

(Here the comma is the command; its function is explained in more detail
below.) If all registers are closed, successive arguments are stored in an
argument list. The argument list always contains five arguments, and as
long as DEBUG is in control (i. e., so long as program execution or instruc.-

tion-step are not initiated), the list remains intact unless it is specifically
altered by the user. In other words, DEBUG uses the most recently entered
value for each of the arguments in the list, and the user need enter only those
arguments that are to be changed. For example, with all registers closed

the four instructions

100,,, 400,

would enter into the argument list 100 for Argl and 400 for Arg4 and would

leave ArgZ and Arg3 intact.

The commands in DEBUG may be divided into three rough categories:
those associated with register examination/change, those associated with
program execution, and those associated with loading/dumping. In the next
three sections this grouping will be used. In Section 5 the commands are
summarized and listed in numerical order (according to their ASCII code).
Section 6 provides details of the semi-symbolic output mode.

Z. Register Examination/Change Commands

In order to examine or to change the contents of a register, the register
must be open. As noted above, only one register may be open at a time. Some
commands may be issued only when a register is open, some only when all

registers are closed, and some in either situation.

In all the examples, underlined characters are those typed by DEBUG.
In general, each line represents a distinct example; if, however, several
lines constitute one example, then the lines are bracketed together (as in the
second example under the /-command below). A carriage return and a line
feed, where not obvious, are denoted by c. r. and I. f. respectively.

4

Command: P (for Program Counter)

Action:

Open and show the contents of the Program Counter (or P register);

error if a register is already open.

Examples:

P/123 The P register contains 1M3 8 and is now

open.

P/123 P? Error if P is typed with a register open.

Commands: A (for A register)

B (for B register)

X (for X register)

V (for Overflow indicator)

J (for J address)

K (for K address)

N (for Number of registers)

T (for Trap address)

Action:

Similar to that for the P-command.

The P, A, B, X, and V "hardware" registers provided under DEBUG

serve the same function as the corresponding registers that are pro-

vided at the actual computer console. The J, K, N, and T registers

are special-purpose registers provided by DEBUG; their use is explained

in Section 3 in connection with program execution and traps.

Command: / (slash)

Action:

If all registers are closed, open and show the contents of Argl; if

a register is open, open and show the contents of the last-named register.

Examples:

1000/1234 Open and show register 1000.

X/1000 / Open and show register X, then open and show

1000/1234 the contents of X (viz. register 1000).

Command: , (comma)

Action:

Enter the last argument (if any), and prepare to accept the next argument

or command. Commas are used to enter a sequence of arguments into

the argument list or into successive registers.

Examples:

1000,2000, Argl is set to 1000, ArgZ is set to 2000,

and Arg3 may be typed.

1000/1234 5001, 5322,, The value 5001 is stored in location 1000,

5322 is stored in 1001, location 1002 is

left unchanged, and a value may be stored

into location 1003 (1. e. register 1003 is

now open).

1000/5001 1000,2000/ "Inserting a patch": ", JMP, 2000" is inserted

Z000/5h00 5001, at locations 1000 and 1001, and a patch pro-

gram is started at location 2000.

Command: c. r. (carriage return)

Action:

Enter the last argument and close the open register (if any). DEBUG

is now ready to accept Argl. When a carriage return is typed, DEBUG

also types out a line feed.

Examples:

1000/123 567, 1234 c. r. 1. f. 567 is stored in register 1000, and 1234

is stored in register 1001 which is then

closed.

6

1,2, 3,4, c.r. .f. The four arguments are entered in the

argument list. The c. r. is used here in

order to return to the start of the argument

list (if, e.g., an error was made in Argl).

Command: (space)

Action:

Enter the last argument.

Example:

1000/1234 555 If a space is typed after the 555, this value

is stored in register 1000, but register 1000

remains open.

Command: - (minus sign)
Action:

Set the current argument negative.

Command: . (period)

Action:

Set the output mode to decimal, and if a register is open, type out the

contents of that register. The output mode remains decimal until changed

by an 0 or I command.
Example -:

10/100 . 64 Register 10 contains 1008 = 6410.I 10/123 100 .64 1000 .512 1008 is stored in register 10 (by typing a

space). This value is typed out in dec'mal,

and it is changed to 100081 which is then also

typed out in decimal.

7

11,2. Z, 33, The three arguments 11, ZZ. and 33 are

stored in the argument list, and the output

mode is set to decimal. (Note that the period

may be typed at any time and. since no regis-

ter is open, has no effect other than to set

the output mode.)

Command: 0 (letter "0" for "Octal")

Action:I: 'Set the output mode to octal, and if a register is open, type out the con-

tents of that register. The output mode remains octal until changed by

an I or . command.

The value 1777778 is always typed as -I by DEBUG.

Example:

10/100 .64 ,-Z 0177776 Register 10 contains 1008 = 6410, and

register II is set to -2 = 17 7 7 7 6 8.

Command: I (for "Instruction")

Action:

Set the output mode to "instruction", and if a register is open, type out

the contents of that register. The output mode remains "instruction"

until changed by an 0 or a . command. The format and mnemonics

used in this mode are discussed in detail in.Section 6.
Examples:

100/50010 I STA 10 Register 100 contains the instruction

", STA, 10".

2000/54077 I STA 2100 Register 2000 contains the instruction
", STA, 2100" (addressing mode is relative

to P).

8

Command: ; (semicolon)

Action:

If a register is open, enter the last argument and open and show the

contents of the next register; error if no register is open.
Examples:

P/1000 100; P is set to 100 and A is opened.

A/ 177776 (The "hardwarew registers are considered

to lie in the following order: P. A. B1 X. V.

I100/50010 I STA 10 (Note that since the JMP is a two-word

101/ imP I ; instruction, the register following 101 is

103,' LDA 11 103.)

Command: : (colon)

Action:

If a register is open, enter the last argument and open and show the

contents of the previous register; error if no register open.

Example:

103/10011 I LDA 11 : (The "previous" register is always one lesi

10Z/ HLT I : than the open register. Thus register 10Z

101/ JMP I : (which contains 1), when entered from 103,

100/ STA 10 is interpreted as a HLT instruction even

though it is actually the second word of the

JMP at location 101.,)

Command: F (for "Find")

Action:

Search the registers from Argl to ArgZ for the value Arg3 masked

by Arg4. That is, type all registers between Argl and ArgZ (inclusive)

which agree with Arg3 in the bit positions marked by ones in Arg4. Thi

command may be given only if all registers are closed. If Arg4 = -I .

1777778, the entire register must match Arg3. If Arg4 = 0, all registi

9

4

match, and a number of consecutive registers may be examined with

one instruction. Upon entry into DEBUG. and after a return from a

trap (see T), from an instruction step (see f) or from an interrupt

(see INT), the mask, Arg4, is set to 0. Typing (of output) may be

suppressed by enabling Sense Switch 1.

Examples:

1100, 103,,0, IF Registers 100 - 103 are typed out in

100/ STA 10 instruction mode.

101/ imP
103/ LDA II c.r. l.f.

0, 1000, ZZZ, -I, F Registers 77 and 777 contain tie value

77/ZZZ 22Z.

777/ZZ2 c. r. I. f.

0, 1000, 1111, 7777, Fc. r. 1. f. No register from 0-1000 contains 1 I11

as the IZ least significant bits.

Command: W (for "Write")

Action:
Store Arg3 in all registers from Argl to Arg2 inclusive. This command

may be given only if all registers are closed.

Example:

0, 100, -1, Wc. r. 1. f. -1 = 1777778 is stored in 0-100.

Command: Any illegal character in DEBUG (e. g. "Z", "?", etc.)

Action:

Delete the argument being typed.

Examples:

123, 45, 66Z? 67 The argument 66 is discarded (DEBUG)

responds by typing a question mark and

a blank) and 61 is entered in its place.

10

1000/1234 43? ? .4321 Register 1000 is left unchanged, and 4321

is stored in 1001.

Misc. Example:

10, 1000, -1, -1, F Search registers 10-1000 for -1.

77/- 1 c. r. 1. f. Register 77 contains - 1.

10,c, r- 1. f Write -1 into 100-1000. (ArgZ and Arg3

remain intact at 1000 and -1. respectively.)

3. Program Execution/Trap Commands and Program Interrupt

Described in this section are the commands used for stepping through a

program and for continuing execution of a program. Also outlined are the use

of the T register for setting a trap (instruction break) and the use of the J, K,

and N registers for specifying the type-out after a trap. An example illustrating

the use of these commands is given after the explanations. Finally, the program -

interrupt feature is discussed.

Command: S (For "Step")

Action:

Starting from the current value of P, step through the number of

instructions specified by Argl; if Argl is not specified (or if it is

specified as 0), step one instruction. All registers must be closed

when this command is issued.

After the Step command is completed, DEBUG types out the new value

of P, and returns control to the user (who may again perform any of

the DEBUG operations). Note that since all input arguments are octal,

the number of instruction-steps is the octal value of Argl. For example,

the command "10. S" will step through 108 = 810 instructions.

In performing an instruction-step, DEBUG places a ", JMPM, BREAK"

instruction immediately following the instruction to be executed. (The

routine BREAK in DEBUG restores the locations that were overwritten

II

by the J31PM instruction and then transfers control to the user after

the specified number of steps have been executed.) Therefore, a pro-

gram should never be stepped across an instruction that modifies

either of the two addresses following the instruction, e. g. 0, STA, *+Zw,

"INR, *+Il;nor should a program be stepped across an instruction of

the form ", JAP, *43*. Also, stepping across an instruction that does

input from the teletype may give erroneous results.

Command: C (for uContinue")

Action:

Continue execution from the current value of P. If a trap has been

set, execution stops the n-tb time that the Trap is reached, where

n = Argl if Argl is specified, and n = I otherwise. All registers

must be closed when this command is issued

In order to set a trap at a particular instruction in a program, the

address of the instruction is entered into the trap register T. To

remove the trap, T is set to -1. When execution stops at a trap the

contents of a number of registers are typed and control is returned

to DEBUG. The user dictates, to a certain extent, the particular

registers that are typed by DEBUG after a trap. The rules are as

follows:

I) The value of P is always typed.

Z) Depending upon the value contained in the "Number register" N,

0 to 4 of the remaining "hardware" registers A, B, X, V may be

typed. Thus, if N = 0, none of these registers is typed; if

N = I, A is typed, if N = Z, A and B are typed, etc.

3) The contents of up to two memory registers may also be typed.

This is especially convenient when the contents of certain locatio Is

must be inspected each time a trap is reached. The J and K

registers hold the addresses of the memory registers to be typed,

12

vith the value - signifying that no register is specified. (See

the following example.)

Several warnings apply to the use of traps. Clearly a trap should

not be set iii the middle of a two-word instruction, nor should one

be set at an address if during execution the program jumps (branches)

to the trap address +1. In addition, if execution begins from the

trap address or from the trap address +I, then the program is

essentially instruction-stepped past trap address +1 (and then a

",JMPM, BREAK" is placed at the trap address). Therefore, the

same cautions given for the Step command apply for traps if execu-

tion is to continue from the trap address. Finally, if a trap was set

and if program execution terminates without a retu& a to DEBUG,

then the locations (trap address) and (trap address +1) must be

returned to their original values in order to restore the program.

Example:

Assume that the following program is stored in memory:

Location Contents Symbolic Code

100 005001 TZA

101 05011z STA COUNT

102 04011Z INR COUNT

103 001001 JOF *÷4

104 000107

105 001000 JMP *-3

106 000102

107 005000 NOP

110 005000 NOP

111 000000 HLT

112 COUNT BSS 1

The following operations illustrate the use of the commands associated

with program execution.

13

P/1000 100 c. r. 1. f. Set P register to entry point.

V/0 c.r. I.f. Make sure V = 0.

3. Sc. r. 1. f. Step 3 instructions.

P/1 03c. r. 1.f.

112/1_c. r. i.f. Check that COUNT a 1.

T/- I IOZc. r. 1. f. Set a trap at location 102.

J/-l 112; Set J to the address of COUNT.

K/- I c. r. 1. f. Leave K with no address specified.

N/4_0 c. r. I. f. At a trap, type no registers other than

P (and 112).

100, C Continue execution and break after the

112/100 trap is reached 1008 times. As expected,

P/102 c. r. 1. f. COUNT = 1008.

T/i0Z I07c. r. I. f. Move the trap to location 107.

N/_0 4c. r. I. f. Show all registers at next trap.

C Continue execution.

I IZ/100000 Location 107 is reached with COUNT =

P/107 77777 + 1. (The JOF instruction resets

A/0 the overflow indicator V.)

B/0

x/-I
V/0c. r. l.f.

1/107 -I c. r. l.f. Remove the Trap.

Command: '.NT (special interrupt key)

Action:

Interrupt the program in execution, type the contents of P, A, B, X,

and V, and return control to DEBUG. The interrupt key is disabled

when DEBUG is in control (except during loading and dumping); the

key is enabled when program execution begins.

14

The primary use of tbe program-interrupt feature is to temporarily

halt the execution of a program that is suspected (or known) to contain

an error. For example. if a I.rogram seems to be looping indefinitely,

execution could be interrupted and the program could be instruction-

stepped until the error was located. If possible, the error could then

be corrected and execution could be re-initiated from the start or from

any intermediate point.

4. Load/Dump and Miscellaneous Commands

This group of commands allows for loading and dumping of programs

(or data) from magnetic tape, for rewinding a tape, and for re-starting DEBUG.

These commands may only be given with all registers closed.

Command: L (for "Load")

Action:

Load the program stored on tape unit = Argl, file number = ArgZ.

DEBUG will respond with one of three messages:

1) If loading is successful, the entry point is stored in P and this

value is typed out. The C-command may then be used to initiate

execution.

2) If Argl represents an invalid tape unit (only 0 and I are valid),

or if there is a read error, the error message "TAPE" will be

i s sued.

3) If the specified file is not a binary program file (viz. the binary

output from the assembler or the output from a dump in DEBUG),

the message "FILE" will be typed.

In order to avoid possible errors, the trap register is reset to -I when

the L-command is given.

15

Example:

0, 0,L Load from tape 0, file 0.

FILE c.r. I. L This file is not a program.
0 I-L Load from tape 0. file 1.

P/1353 c. r. 1. f. Load is complete; entry point is 1353.

Command: D (for "Dump")

Action:

Dump the block of registers from Argl to ArgZ inclusive, with entry

point set to Arg3; the output tape and file are specified in Arg4 and

ArgS, respectively. Only the last block in a binary file contains the
entry point, so Arg3 should be set to -I for all but the last block.

Thus, if a program comprises several non-contiguous areas of core,
several D-commands must be given. After the last block is dumped

(with Arg3 = entry point . 0) DEBUG types a carriage-return/line-

feed; after intermediate blocks, DEBUG types "--" to indicate that

the dump file is incomplete.

If Arg4 represents an invalid tape unit, or if there is a write error,

the rc_-tic "TA.7-?F." is typed.

Example:

The following sequence will dump registers 100-200, 300-400, and

1900-02000 onto tape 1, file 2. The entry point is 111:

100, 200, - 1, 1, ZD- - 300, 400, D-- 1000, 2000, 111, D c. r. 1. f.

Note that it is not necessary to re-enter Arg4 or Arg5 after the first

command. (Also, Arg3 need be entered only for the first and last

blocks.)

Command: R (for "Rewind")

Action:

Rewind the tape unit specified by Argl. (If Argl represents an invalid

unit, "TAPE" is typed.)

16

Rewinding should always be performed by DEBUG rather than manually

because certain parameters that define the tape position must be reset.

Command: Q (for uQuit")

Action:

Restart DEBUG. (The tapes are rewound, all buffer areas are cleared,
and DEBUG itself is initialized.)

17

5. Summary of DEBUG Commands

Command Meaning. [Page reference]

c. r. (carriage return) Enter the last argument, close the open register
(if any), and prepare to accept Argl. [41

(space) Enter the last argument. 151
Enter the last argument and prepare to accept the
next argument or command. [41

Argument is negative. [S]
Set output mode to decimal. 151

Show the contents of. F 31
(0-7 Octal digits for input arguments.)

Enter the last argument and open and show
previous register. 171
Enter the last argument and open and show next
register. [71

A A register. 13, 71

B B register. [3, 1]

C Continue execution. [101

D Dump a block of core. [141

F Find a masked value. [71

I Set output mode to "instruction". 16, 171

3 J address (register to be typed after a trap). 13, 101

K K address (register to be typed after a trap). (3, 101

L Load from tape. [131

N Number of registers to be typed after a trap. [3, 101

0 Set output mode to octal. [61

P Program counter. [3, 71

Q Restart DEBUG. [15)

R Rewind a tape. [141

S Instruction step. [91

T Trap address. [3, 101

V Overflow indicator. [3, 71

W Write a value inito memory. [81

X X register. [3, 71

INT (special switch) Program interrupt. [121

Any other character Delete the last argument. [81

18

6. Format and Mnemonics for "Instruction" Output Mode

The opcode mnemonics used in the "instruction" output mode are those

recognized by the assembler (with the four altered long- shift opcodes). A

double question mark (? ?) is used if the opcode is illegal. An asterisk (*)

following the opcode indicates that the address in the variable field is indirect.

Addresses and data in the variable field are always typed out in octal. Thus,

", LSRA, 1I" means Logical-Shift-Right-A 118 = 910 places.

Register-change instructions are typed in the following format:

OPCODE SOURCE, DESTINATION

Opcode is either ZERO, MERG, INCR, COMP, or DECR, and Source and

Destination are the source registers and destination registers. For the

ZERO opcode, only destination registers are specified. Finally, if the

instruction is conditinnal on the setting of the overflow indicator, "OF" is

typed preceding the source registers.

Examples:

ZERO XA Zero in X and A

DECR , A -I in A

MERG X, B Transfer X to B (TXB)

INCR X,XA Increment X and bring into A

INCR OF, A, A Increment A if overflow set (AOFA)

Two forms are used for the "conditional" instructions jump, jump and

mark, and execute. If no conditions are specified, then the mnemonic JMP

(or JMPM or XEC) is used; if conditions are specified, then the mnemonic

JIF (or JIFM or XIF) is used, and the conditions are typed in the variable

field preceding the address.

Mnemonic Condition

OF Overflow
AP A ZO
AN A< 0
AZ A= 0

19

Mnemonic Condition

BZ B=O
XZ X=O
Si Sense Switch 1

Sz Sense Switch Z

S3 Sense Switch 3

Examplens:

JMP 1 2345 jump unconditionally.

JIFM AZ, Mi3 Jump and mark if A = 0.
::XIF SI, AN, BZ, 456 Execute 456 if Sense Switch I

and A<0and B=0.

20

MAGNETIC-TAPE ROUTINES

Two sets of magnetic-tape routines have been written for the Varian 6Z0/i.

The file-handling routines provide a very convenient means for storing and re-

trieving data from tape. In using these routines the programmer need not con-

cern himself with the details of buffer allocation, tape positioning, and error

checking. The tape-handling routines are lower-level programs that permit

more flexible use of the tapes but that require much more bookkeeping by the

programmer.

Given below is the necessary programming information for the two sets

of routines. Information and specifications on the magnetic tape units and on

the method and format of data storage on tape can be found in Varian's "Magnetic

Tape Controller" manual.

1. File-Handling Routines

Presented in this section are the specifications and the calling procedures

for the following routines and system locations (all symbols are recognized by

the assembler):

$RDIR - read directory Directory routines
$WDIR - write directory

$OPEN - open file
$DATA - data to or from file - Data-handling routines
$CLOS - close file

$LOAD - load from tape - Dynamic loader

$INIT - initialize system - Initialization routines
*$RESET - rewind a tape I

$DOUT - eliminate DEBUG Routin-es for elimination and
$SIN - reload system - restoration of part of system

$RETN -used in error recovery
$SYS - starting address of system - Memory registers holding
$DEBUG- entry point for DEBUG system addresses

21

Preceding the specifications are some introductory remarks and explanations

of the directory routines $RDIR and $WDIR and of the data-handling routines

$OPEN, $DATA, and $CLOS. The use of the remaining routines and of the

system locations is straightforward enough that they do not require explanations

beyond those given in the specifications.

Information on magnetic tape is arranged in files, with each file com-

prising one or more records. For example, a tape file could be the text for

a source-language program, a binary (assembled) program, or the output

data produced by a program. The user must keep track of the files on his

tapes. That is, he must maintain an up-to-date list of the contents of each

active file. Since the file-handling routines perform all the necessary buffering
chores, the programmer need not be concerned with the nature or number of

records in his files.

In general it is not possible to recover space on a tape. That is, if the

information written on a particular file is no longer needed, the space occupied

by this file cannot be used for a new file even if the old and new files are of the

same length. The basic reason is that because of the relative inaccuracies in

positioning a tape, some of the useful data written beyond the old file may be

destroyed when the old file is overwritten. (Of course, the space occupied by

the last tape file may be recovered since there is nothing of interest beyond that

point.) It is frequently desirable to have a file that can be updated dynamically

(i. e. under program control) but that occupies a fixed position on the tape. This

file could, for example, contain a list of the active files on the tape. The routines

$RDIR and $WDIR permit the reading and writing of cuch a directory on tape.

These directory routines may be used only with lapes that have been properly

formatted. The directory occupies one record (record 3, file 0) and is read

or written in one unbuffered operation. The first word of the directory is the

count - i. e., the number of words that follow. For example, a five-word

Formatted tapes containing the system programs and a blank directory will
. be provided to users of the Varian 620/i.

22

directory would occupy six memory registers, with the first register containing

the value 5. A typical program might read in the trectory, refer to the direc-

tory and perhaps modify its contents (and also its count), and then write it out.

If the directory is not modified, it need not be re-written.

The three routines that will be used most often - $OPEN. SDATA, and

$CLWS - provide for data transfer to and from tape. $OPEN is used to "open"
a tape file - i. e., to allocate the necessary buffer space for forthcoming I/O

operations. Up to eight files may be open simultaneously. Certain information

must be given to $OPEN in order to specify the file to be opened: the tape unit,

the file number, whether the file is to be a read file (input from tape) or a write
file (output to tape), and, if a write file, the type of file (binary program, text,

etc.). This informatior is passed to $OPEN in registers. Upon return, $OPEN

passes an identification word (ID) for the file. After a file has been opened,

it is referred to by its ID. Thus, to store or retrieve the next item of data.

$DATA is called with ID as the only calling parameter. When operations on
a file are complete, $CLOS is called in order to free the buffer space (and to

write an end-of-file mark for a write file).

With these routines, as with any routines that perform tape I/O, provision

is made in case tape errors occur. If the tape coerations are completed with-

out error, then the routine returns normally - to the instruction following the
call. However, if more than a fixed number of tape errors occur, the routine

returns to the error-return address that is specified with the call. An error

return can be either non-fatal or fatal. Recovery from a non-fatal error is

possible, provided that the program can tolerate the loss of one record of

data; recovery from a fatal error is not possible. The possible causes of an

error return are as follows (errors are fatal unless otherwise noted):

- Tape-positioning error (desired position cannot be found).
- Read error (i. e., position is correct, but a read error occurred).

This error is non-fatal.

At present, up to four tape errors are permitted.

23

- Tape-unit failure.

- No buffers ava:1able (during a call to $OPEN).
i (kn error return from a write-file operation is always fatal.) Note again that

;.r e-ror return results not from a single tape error, but from some cornbina-

tion of the above errors.

In order to recover from a non-fatal error, the program should execute

the instruction ", JMP, $RETNM . ($RTETT is a special register which contains

the proper address fcr a re-try of the I/O operation.) If recovery is not desired,

then the file must be closed by the program. After a fatal error - and in partic-

ular after an error in $CLOS itself - the file is always closed prior to the return.

In this case an additional call to $CLOS will not cause any errors.

Outlined below is a typical instruction sequence that illustrates the use

of the data-handling routines and the error recovery procedure.

PROG CALL $INIT Initialize

CALL $OPEN, ERROR Ope.' file

NEXT CALL $DATA, ERROR Next data item

JOF DONE End-of-file

Process data

JMP NEXT

ERROR JAN FATAL Recovery impossible
Issue message to show that

data has been lost

JMP $RETN Try to recover

24

FATAL
Issue appropriate message

DONE CALL $CLOSS ERROR Close file

iMP $DEBUG Return to DEBUG

END PROG

In this example, if recovery was not desired, then all error returns would

be to FATAL.

I!2

Specifications and Parameters for File-lJndling Routines

Tape unit- 0 or I

File number: 0 - 17778 inclusive

File type: 0 -binary program
I -text
2 - 7 -unassigned

File ID: > 0 (returned by $OPEN; used in
calls to $DATA and $CLOS)

Buffer size: 400 8 = 256 10 words

Buffer allocation: Backwards from ($SYS). highest
locations first. (See Core Map and
description of $SYS.)

Maximum no. buffers: 8

Allowed directory size: 1-400008 words (approximate), including
count. Firbt word of directory is the
count - i. e. the number of words follow-
ing. A blank directory contains 0 as its
first and only word.

Number of tape errors
for an error return: 4

26

Tape Format and Record Format

Formatted tape

File 0, record 1: System programs (DEBUG, File-
Handling Routines, Tape-Handling
Routines).

File 0, record Z: Interrupt instructions and tape-routine
addresses.

File 0, record 3: Directory.

Files I and up: Available for use.

Format of records written by system

15 13 1Z 109 0
header code o I I Itype I file no.

3-word header rcd. no. (Ž 1) t Ue yfl-adigruie
no. words

Bit13 0o read file
I - write file

dataI
Bit 15 = Tape unit (0 or I)

375 words
:8

Records are fixed length.

This is the number of actual
data words in the record.

27

Read dietr fro tp.I l"° a
I $RDIR

I
Calling sequence: CALL $WDIERROR RETURN)

Entry parameters: (B) = Starting location of directory.

(X) = Tape unit.

Return parameters: None. (Error return is always fatal.)

Registers used: A, OF

Remarks: The starting location of the directory contains

the directory count - i. e. the number of words

in the directory (excluding the count itself).

Thus, count = 0 signifies an empty directory,

and in general

final directory loc. = starting loc. + count.

These routines may only be used with formatted

tape.

28

$OPEN Open a file on magnetic tape and allocate the

necessary buffer space.

Calling sequence: CALL $OPEN, (ERROR RETURN)

Entry parameters: (A) = File type (2 0) if a write file;

= -I if a read file.

(B) = File number.

(X) = Tape unit.

Return parameters:

Normal return - (A) = File type.

(B) = Header code (see Record Format

information).

(X) = File ID j 0.

Error return - (A) 2 0 if error is non-fatal;

= -1 if error is fatal (file is closed).

(B) = Header code.

(X) = ID word (unless no buffers available).

(OF) = Set if no buffers available. (This is a

fatal error.)

Registers used: A, B, X, OF

29

$DATA Store or retrieve data from a file.

Calling sequence: CALL $DATA, (ERROR RETURN)

Entry parameters: (A) = Data (if a write file).

(X) = File ID.

Return parameters:

Normal return - (A) = Data (new data if a read file, original

data if a write file).

(OF) = Set if end-of-file on a read file;

= Reset otherwise.

Error return - (A) 2 0 if error is non-fatal;

= -I if error is fatal (file is closed).

Registers used: A, OF

30

$CLOSE Close a file (or close all files) and free the

appropriate buffer area.

Calling sequence: CALL $CLOS, (ERROR RETURN)

Entry parameters: (X) = File 1D if a single file is to be closed;

= 0 if all open files are to be closed.

Return parameters:

Normal return - None.

Error return - (A) = -I (all errors fatal).

(X) = ID of f^le that caused error.

(Thii. file has been closed.)

Registers used: OF (A and X .,ay be altered if an error return

occurs.)

Remarks: An error return can only occur for a write file.

If all files are to be closed and an error return

occurs, X contains the ID of the first file that

caused an error; an additional call to $CLOS,

again with (X) a 0, must then be made in order

to close the rerr.aining open files.

31

$LOAD Dynamic loader from magnetic tape.

Calling sequence: CALL SLOAD, (ERROR RETURN)

Entry parameters: (B) - File number.

(X) = Tape unit.

Return parameters:

Normal return - (A) = Entry point.

Error return- (A) = 0. OF reset if tape error;

= 0, OF set if no buffers left;

= -I if wrong file type (or if file is not

complete).

Registers used: A, OF

Remarks: $LOAD requires one buffer during execution.

i

• 32

$1NIT Initialize the tape system.

Calling sequence: CALL $INIT

Entry parameters: None.

Return parameters: None.

Registers used: None.

Remarks: $INIT rewinds the tapes, clears the buffers,

and initializes certain system parameters.

This routine should be called at the beginning

of any program that uses the tapes if the status

of ae- tapes or of the buffers is not known.

33

$RESET Rewind a tape.

Calling sequence: CALL $RESET

Entry parameters: (X) = Tape unit.

Return parameters: (A) = 0.

Registe -s used: A

Re-rarxs: .a addition to rewinding a tape, $RESET resets

certain system parameters. When the file-

handling routines are being used, tape rewinds

should be performed only by $RESET or by

$INIT.

34

$DOUT Logically eliminate DEBUG from core.

Calling sequence: CALL $DOUT

Entry parameters: None.

Return parameters: None.

Registers used: A

Remarks: This routine is called if the space occupied

by DEBUG is required during execution of a

program. (With DEBUG eliminated, the program-

interrupt feature is of course disabled.) If $DOUT

is called, then as its final instruction, the program

in execution should reload DEBUG by calling $SIN.

351

$SIN Reload the system and transfer control to DEBUZ.

Calling sequence: 3MP $SIN

Entry parameters: (X) = Tape unit.

Remarks: $SIN is called as the final instruction of a

program that eliminated DEBUG. Note that this

routine is called with a JMP instruction. If no

tape errors occur, $5SIN transfers control to

DEBUG. If a tape error does occur, $SIN halts

at the start of the bootstrap loader.

36

SRETN Location used in recovery from a non-fatal

error return.

Usage: iMP SRETN

Remarks: Register X (which contains the file ED when

the jump to the error return is made) must

contain the file]ID. $RETN may be referenced

only after a non-fatal error.

37

$SYS Register containing the starting address of the

system.

Typical usage: LDAE $SYS

Remarks: A program in execution may use all memory

registers up to, but not including, the address

held in $SYS. The program must allow space

for the grea.est number of buffers that will be
used at any one time (one buffer for each open

file plus one additional buffer if $LOAD is called).

Buffers are allocated "backwards" from $SYS,
highest locations first. (See Core Map.) A

sample instruction sequence is

LDAE $SYS I st system address

SUBI N*0400 At most N files will

DAR be open simultaneously

STA LAST Last usable address

The location LAST now holds the address of the

last (highest-numbered) memory register that

may be used by the program.

38

$-DEBUG Entry point for DEBUG.

Usage: JMP $DEBUG

Remarks: After completing execution, all programs should

return to DEBUG, either by a jump to $DEBUG

or, if DEBUG has been eliminated by $DOUT. by

a caU to $SIN.

39

Z. Tape-Handling Routines

In this section the specifications and calling procedures for the following

basic tape routines are given:

$RECD I
$FILE - Tape positioning routines

$REW

$READ

$WRITE - Read/Write routines

$FMRK

$ECHK - Error checking routine

$UNIT - Sense tape unit ready

$DEV - Special interpretive routines
SUDEV

These routines give the programmer essentially complete control over tape

operations. The read/write routines and the positioning routines (except

for $FILE) only initiate the requested action. If necessary the program should

check for completed action and for possible errors. In the specifications below,

the timing, if applicable, is given as the minimum nutmber of cycles required

for the routine to initiate the appropriate action and then return. (Execution

will proceed in the minimum time if the referenced tape unit is in the ready

state and if, for a read or write operation, the BIC is also in the ready state.)

As with the file-handling routines, the routine-names are recognized by the

assembler. It should be noted that if the file-handling routines are not used,

then the space they occupy may be utilized. If this is done, then the contents

of $SYS are no longer meaningful (see the Core Map to obtain the address of

the last usable memory register), and the system should be reloaded (by

jumping to $SIN)*after execution is completed.

The routine $SIN is located after the tape-handling routines, i. e., imme-
diately preceding the bootstrap loader.

40

$RECD Move tape a specified number of records.

Calling sequence: CALL $RECD

Entry parameters: (A) = Number of records:

(A) > 0 - move forward (A) records;

(A) = 0 - no movement;

(A) < 0 - move backward -(A) records.

(X) = Tape unit.

Return parameters: (A) = 0 if move completed;

< 0 if beginning-of-tape encountered (during

a backward move); -(A) = number of

records left to move.

Registers used: A

Remarks: If the end-of-tape mark is reached, the tape is

rewound and forward motion is resumed. That

is, the forward move "wraps around" from the

end to the beginning of the tape.

When $RECD returns, the tape unit is performing

the motion associated with the last record of the

requested move.

41

$FILE Move tape forward a specified number o filr s

or position tape at a specified file.

Calling se-,aence: CALL $FILE

Entry parameters: (A) = Number of files:
(A) >0 - move forward (A) files;

(A) = 0 - no movement;

(A) < 0 - position tape at file number =

complement(A).
(X) =Tapeunt

Return parameters: (A) = 0.

Registers used: A

Remarks: No provision is made for a backward move

because the hardware associated with the tape

units cannot sense a file mark during backward

tape motion. If $FILE is called with (A) <0, the

tape is rewound and then advanced complement (A)

files. As with $RECD, the tape is considered to

wrap around from end to beginning.

42

$REW Rewind a tape.

Calling sequence: CALL $REW

Entry parameters: (X) = Tape unit.

Return parameters: None.

Registers used: None.

Remarks: When $REW returns, either the tape unit is

ready at the load point or it is in the process

of rewinding.

43

$READj tRead I a record.

$WRITE) IWrite)
I $READ

Calling se-luence:
CALL 1$WrITE

Entry parameters: (A) = Final memory address.

(B) = Starting memory address.

(X) = Tape unit.

Return parameters: None.

Registers used: None.

Timing: $READ - 50. 75 cycles (minimum).

$WRITE - 57.75 cycles (minimum).

Remarks: The contents of locations (B) to (A) inclusive

are filled ($READ) with data from the next

tape record, or they are written ($WRITE)

as the next record on the tape. To read a

record of unknown length, set (A) large

[e. g. (A) = ($SYS)-I] in the call to $READ,

and then call $ECHK to obtlin the actual final

address.

44

$FMRK Write a file mark.

Calling sequence: CALL $FMRK

Entry parameters: (X) = Tape unit.

Return parameters: None.

Registers used: None.

Timing: 49. 25 cycles (minimum).

4

45

$ECHK Check for errors (after $READ or $"WRITE).

Calling sequence: CALL $ECHK, (ERROR RETURN)

*Entry parameters: WX Tape unit.

Z Return parameters:

Normal return - (A) = -I if operation was completed normally;
= Final memory location ('! 0) if operation

terminated prematurely.IvError return - (A) = 0.

Registers used: A

Timing:

Normal return -60. 75 cycles (minimum).

Error return -47. 5 cycles (minimum).

Remarks: After a normal return, the caller must check

whether A <0 or A 2: 0 and must then take

appropriate action. If (A) ý! 0, then A contains

the final memory location that was used in the

previous 1/0 operation - for example the last

location filled in $READ. After a read operation

an error return signifies a tape read error, and

after a write operation it signifies that the write-

enable ring is not present.

46

$UNIT Sense tape unit ready.

Calling sequence: CALL $UNIT

Entry parameters: (X) = Tape unit.

Return parameters: None.

Registers used: None.

Timing: 12. 25 cycles (minimum).

Remarks: $UNIT does not return until the specified tape

unit is in the ready state.

47

$DFV Store a device number into an instruction.

Calling sequenc.e: CALL $DEV, INSTRUCTION

or, equivalently,

CALL $DEV
INSTR .. .

Entry parameters: (X) = Device number: 0 • (X) ! 7.

Return parameters: None (INSTRUCTION is altered).

Registers used: None (See Remarks).

Timing: 20 cycles.

Remarks: $DEV is an interpretive routine that simplifies

programming if two or more of the same type

device are part of the computer system. Bits

0 - 2 (the device number) of INSTRUCTION are

masked out and replaced by bits 0 - 2 of register

X. The modified INSTRUCTION is set back at the

original location, and $DEV returns by jumping

to this location. ($DEV masks out bits 3 - 15 of

register X, and hence upon return these bits are

0.) For example, the following sequence tests

for end-of-tape on the unit number held in

location TAPE:

LDX TAPE Tape unit in X.

CALL $DEV Set unit no. in SEN instr.

SEN 0510, EOT Jump to EOT if end-of-tape.

48

$UDEV Wait for tape unit to enter ready state and then

proceed as for $DEV.

Calling sequence: CALL $UDEV, INSTRUCTION

Entry parameters: (X) = Tape unit = Device number.

Return parameters: None (INSTRUCTION is altered).

Registers used: None (See Remarks under $DEV).

Timing: 40. 25 cycles (minimum).

49

COLD-START PROCEDURE

1. Turn computer power on, enable memory, and press STEP and then

SYSTEM RESET.

2. Turn power on for the teletype and magnetic-tape units.

3. Mount a formatted tape on unit 0 (or on unit 1 if the indicated changes are

made in the bootstrap loader), mount any tape on the other unit, and bring

each tape to its load point.

4. Enter the bootstrap loader:

(a) Enable REPEAT.

(b) Set the U register to 54000 (STA relative to P).

(c) Set the P register to Y7767.

(d) Enter a bootstrap instruction (see next page) into the A register.

(e) Press STEP to enter the instruction in memory.

(f) Repeat steps (d) and (e) until all bootstrap instructions are entered.

5. Set (P) = Y7770, (U) = 0, (A) a Y7777, (B) a Y4000, and (X) a 0.

6. Press RUN. If the system loads properly, DEBUG will begin execution.

If there is a tape error, execution will halt with (P) = Y27770. In this case,

rewind the tape, set A and B as in Step 5, and press SYSTEM RESET and

RUN in order to re-attempt the load.

Y = 2 for 12K memory, Y = 3 for 16K memory, etc.

50

BOOTSTRAP LOADER

Location Ccntents Symbolic Code

Y7767 000000 HLT

Y7770 103220 OBR 020 Starting BIC location

Y7771 103121 OAR 021 Final BIC location

Y7772 101020 EXC 020 Enable BIC

Y7773 100010 EXC 010 Read a record

Y7774 101210 SEN 0Zl0, $SIN When ready, call $SIN to

Y7775 0Y7740

Y7776 001000 JMP -- Z complete loading

Y7777 0Y7774

Set (P) = Y7770

(U) =0

(A) = Y7777

(B) = Y4000

(X) =0

If the formatted tape is on unit 1, set X = I and change locations

Y7773 and Y7774 to 100011 and 101211, respectively.

Y = 2 for I2K memorY, Y = 3 for 16K memory, etc.

S~51

CORE MAP

octal address
40

Interrupt instractions 17
System addresses

100

- Available for

programs

Tape buffers

($SYS) - Y4000

DEBUG

Y6400

File-handling routines

Y7500

Tape-handling routines
Y7770{ Bootstrap loader I 77
Y 7777

If DEBUG is eliminated, ($SYS) = Y6400 and tape buffers are allocated
from this point.

Y = 2 for 12K memory, Y = 3 for 16K memory, etc.

52

B. Additions and Modifications to DEBUG Package and Magnetic-Tape
Routines

1. Introduction

A number of additions and modificatons have been incorporated

into DEBUG and into the magnetic-tape routines. The following report provides

information on these changes. The next two sections detail the new features in

DEBUG and the modifications of the original DEBUG commands, with

Section IV giving an updated summary of all the DEBUG commands. Section V

describes the ;.miodifications to tape routines; to the user, these modifications

appear minor, but they w2re necessary in order to accommodate four tape drives,

and they result in a more flexible system. The next section describes the sub-

routine $DIV which compensates for some hardware shortcomings of the Varian

620/i DIVID)E instruction. Sections VII and VIII provide a revised Core Map and

a revised system Loading Procedure.

2. New DEBUG Features

DEBUG may be operated from the CRT terminal or from the TTY.
When DEBUG is re-loaded from the system tape, operation always begins on

the TTY. The following command enables the user to switch between the

terminals.

Command: < ("less than" sign)

Action:

Switch operation of DEBUG to the other terminal. The message

"SWITCH" will be typed on the original terminal, and "CONTINUE"

will be typed on the new terminal. This command may be given only

at the left margin - i. e., only with all registers closed and with no

arguments entered.

When the cursor reaches the bottom of the CRT screen, the user

should erase the screen and re-position the cursor (by using the

PAGE key, or the HOME and ERASE keys). The Q-command from

53

the CRT ito restart DEBUG) erases the screen.

The following command can be helpful in debugging a program since it

sets the memory to a known state before loading programs.

Command: = (for "Equals 01)

Action:

Store zero in all non-system memory locations (cf. Core Map given

in Section VII). This command may be given only at the left margin.

The following command enables a user to intersperse pertinent

comments with TTY or CRT output.

Command: ((asterisk)

Action:

Set DEBUG to accept a comment: DEBUG will echo back all

characters typed after the *, but it will take no action on the

characters. A carriage return restores DEBUG to its normal

mode of operation. This command may be given only at the left

margin.

The following command allows a block of core to be displayed com-

pactly on the CRT.

Command: G (for "Garbage")

Action:

Display in octal on the CRT the block of registers from Argl (mod

1008) to Arg2 inclusive. 4008 registers are displayed on one "page, "

and the PAGE key on the CRT terminal is used to display the next

4008 registers and to return to DEBUG after the final page is

examined. The display may be terminated prematurely be enabling

Sense Switch 1 and using the PAGE key. All registers must be

closed when this command is issued.

54

Example:

I, 2222, G Display registers 1111-2222 inclusive.

The first page will actually show registers

1100-1477, the second page 1500-2077, and

the final page 2100-2477.

The contents of registers may be displayed as floating-point numbers

or as decimal numbers with a specified binary point. The following two

commands enable a user to select either of these modes. Information on the

format of typed numbers is given in the following section. (The Varian 620/i

manual gives details on the internal representation of floating-point numbers.)

Command: E (for "Exponent")

Action:

Set the mode to floating point. This command may be issued only

if all registers are closed.

Command: Z (for Z register)

Action:

Open and show the contents of the Z register - the binary-point

register. An error occurs if a register is already open.

The contents olr the Z register represents the position of the binary

point of registers displayed in the decimal mode. If (Z) = 0, the

binary point is assumed to lie to the right of bit 0 and the value of

the register will be interpreted as an integer; in general, if (Z) = k,

for k positive or negative, the binary point is assumed to lie to the

right of bit k and the value is interpreted as an integer divided by

2 k (equivalent to the data format Bk as interpreted by the Assembler).

The Z register is always displayed as a decimal integer. A carriage

return closes the register and restores DEBUG to its former mode.

55

Example:"

O100/1000 Register 100 contains the value 10008.

Z/o. (Z) = 0.

S.100/512. 10008 = 51210.

Z/0. 2 Set Z to 2.

100/128.0 10008 B2= 51210/2' = 1,810

Z/2. -2

100/2048. 10008 B-2 = 5 12 10(22) = 2 04 8 10

In order to facilitate communication between the user and the computer

during program execution, a special entry point, $PAUSE, has been created

in DEBUG. With the entry $PAUSE, a programmer can conveniently have

a message typed while entering DEBUG to permit parameters to be entered

or altered. Specifications for $PAUSE and an example of its usage are

given below.

Calling Sequence: CALL $PAUSE, (MESSAGE ADDRESS)

where (MESSAGE ADDRESS) is the address

of the text to be typed; the text must be

terminated by a location containing 0.

Entry Parameters: None

Return Parameters: None

Registers Used: None

Remarks: The $PAUSE entry to DEBUG saves registers,

types the text contained at MESSAGE ADDRESS,

types a carriage return, and then allows the user

to perform any of the DEBUG operations. To

resume program execution, the user types C (for

"Continue ").

The symbol $PAUSE is recognized by the assembler.

2:Underlined characters are those typed by DEBUG.

56

Example:

*In this program when the first call to $PAUSE is reached, MSGI
-will be typed. The user then enters the desired value of PARAM

-(in the appropriate mode), and types C to continue execution.

-When computations are finished, MSGZ will be typed and, after

*examining the results, the user may type C to rerun the program or

*Q to terminate execution and restart DEBUG.

AGAIN NULL Start of program

CALL $PAUSE, MSGI Get parameter value

CALL $PAUSE, MSGZ
JMP AGAIN

ORG 01000

PARAM BSS I

MSGI DA1A 'ENTER PARAM VALUE AT LOG 1000', 0

MSG2 DATA 'DONE. RESULTS AT LOC 2000',0

3. Modifications to Original DEBUG Commands

The most significant changes to DEBUG niave been to permit

more flexibility in the display and in the entry of register values. The con-

tents of registers may be examined in any of four modes: octal, decimal

(with specified binary point), floating point, t or instruction. The mode may

be changed only when all registers are closed. With all registers closed,

input arguments are always octal values; with a register open, the input

mode is the same as the output mode (except for instruction mode, in which

t The routine that displays numbers in decimal and floating formats was

originally written by A. Griffiths.

57

case input is in octal). The following example illustrates this point:

0100/0_100 Set register 100 to 1008.

.100/64._100 1008 =6410; set register to 10010.

0100/L44 Register 100 now contains the octal value

144.

Decimal and floating-point numbers are always typed with a decimal point

by DEBUG. Decimal integers (i. e., (Z) = 0) are typed as full-precision

integers (i. e., with no fractional part). Non-integer decimal values

(i. e., (Z) 4 0) and all floating-point values are shown to four significant

figures , with exponential notation used if the value is less than 0.001 or

greater than 9999. Decimal and floating-point arguments may be entered

into DEBUG in either decimal or exponential notation. For example, all of

the following input formats are equivalent:

1, 1.0, 1.00000, lEO, 1OE-1, I00.OOOE-2, .IEI, 0.999999

Note that it is not necessary to enter the decimal point.

The following minor modifications have also been incorporated in

DEBUG:

When any of the registers T, P, J, K, or N are opened, the mode

is set to octal and remains octal after the register is closed. (How-

ever, when the value of P is shown by DEBUG at a trap - or after a

program interrupt or a program step - the mode used is the current

mode of DEBUG.) For example:

.A/100. 200 Set (A) to 20010.

P/1000 100 P shown in octal and set to 1008.

T/-l 101 Set trap.

N/4_I Show only A after trap.

A/3 10 Mode is still octal.

• C Set mode to decimal and continue execution.

Zero is always typed as "0. ".

58

6 At trap, P and A are shown in decimal.A/ZOO.
P/101 When open, P is shown in octal.

- If the space-bar is typed with a register open, DEBUG will display

the contents of the register. This feature is useful in checking

conversion accuracy. For example:

Z/0._12 Set binary point to 12.

.1000/0._. 49019 .4902; With only 12-bit accuracy, the desired

1001/0. .62387 .6238 values are rounded as shown.

1100/NOP 57777 STA* 777 Set 100 to the instruction, STA-, 777, and

check that the desired instruction is

entered.

-The /-command cannot be given with a register open.

4. Summary of DEBUG Commands

Cor.-unand: Meaning

c. r. (carriage return) Enter the last argument, close the open
register (if any), and prepare to accept
Arg 1.

(space) Enter the last argument; also, if register
open, display contents of register.

Comment to be typed.

Enter the last argument and prepare to
accept the next argument or command.

Argument is negative.

Set mode to decimal.

Show the contents of.

(0-9) Digits for input arguments; only 0-7 for
octal input.

Enter the last argume-t and open and show
previous register.

Enter the last argument and open and show
next register.

< Switch operation to other terminal.

59

Set non-system core to 0.

A A register.

B B register.
C Continue execution.

D Dump a block of core.

E Set mode to floating point.

F I ind a masked value.

G Display a block of core on CRT.

I Set mode to "instruction".
J J address (register to be typed after -

a trap).

K K address (register to be typed after
a trap).

L Load from tape.

N Number of registers to be typed after a
trap.

0 Set mode to octal.

P Program counter.

Q Restart DEBUG.

R Rewind a tape.

S Instruction step.
T Trap address.

V Overflow indicator.

W Write a value into memory.
X X register.

Z Binary-point register.
INT (special switch) Program interrupt.

Any other character Delete the last argument.

5. Modifications to Tape Routines

The tape routines have been re-written to handle up to four tape
drives (numbered 0 - 3) from one controller . The routines may be called

even if one (or more) of the drives is offline: if an operation is attempted

Bits 14 and 15 in the header code word specify the tape-drive number,

60

on an offline drive, the routine wi]l return and indicate that a tape error has

occurred.

The iile-handling routines are used exactly as before. The tape-

handling routines have been modified as follows:

$ECHK.)
$DEV Deleted from aystem.$UDEV

$CHK Check tape status.

$CONN Connect tape drive to controller.

$BIC Sense BIC ready.

The three new routines are described below. The remaining tape-handling

routines are used exactly as before; The new timing requirements for the
tape-handling routines are given in the table at the end of this section.

61

$CHK Check status of a tape unit after any
tape operation.

Calling Sequence: CALL $CHK, EOT, EOF, ERROR

Entry Parameters: (X) = tape unit.

K 1 Return Parameters:

SNormal return In sequence: (A) = -4

Special returns To EOT if end-of-tape encountered:
(A) = -I

To EOF if end-of-file encountered:
(A) = -2

To ERROR if any tape error:

(A) = -3 if parity or write-ring error;

(A) = -5 if tape is offline;

(A) = Final memory location (a 0) if
operation terminated prematurely
(e.g., last location filled by $READ).

Registers Used: A

Timing. See table.

62

$CONN Logically connect controller to a tape unit.

Calling Sequence: CALL $CONN

Entry Parameters: (X) = Tape unit.

Return Parameters: None

Registers Used: None

Tiriing: See table.

Remarks: All tape-handling routines - except $UNIT -

call $CONN. Before actually connecting
the controller 1-o the specified unit, $CONN
senses and saves the error conditions of
the drive currently connected.

63rII

63

$BIC Sense BIC reacdy.

Calling Sequence: CALL $BIC

Entry Parameters: None

Return Parameters: None

Registers Used: None

Timing: See table.

64

Timing of Tape-Handling Routines

Routine Minimum No. Cycles

$READ 85.75

$WRITE 85.75

$FMRK 77.75

$CHK 132.25 (normal return)

$CONN 73.75

$UNIT 5.5

$BIC 5.25

65

6. Divide Subroutine

The divide instruction on the Varian 620/i will produce misleading

results if the dividend (numerator) is negative and an integral multiple of the

divisor (denominator). The routine described below , $DIV, compensates

for the hardware shortcomings. and in addition provides a double-precision

quotient. If, however, the numerator is known to be positive, and if only

single-precision results are required, then $DIV need not be called.

$DIV Divide routine that compensates for
Varian 620/i hardware ideosyncracies.

Calling Sequence: CALL $DIV, DIVISOR

where DIVISOR contains the denominator.

Entry Parameters: (A), (M) = Numerator, double precision

Return Parameters: (A), (B) = Quotient, double precision B15
(i. e., the 1b1zary point is located to the
right of A-register bit 0).
OF = Set if overflow occurred

= Reset otherwise

Registers Used: A, B,OF

Timing: Varies from 51 cycles to 75 cycles
depending upon sign and magnitude of
numerator and denominator. Average
time - 67 cycles.

15Remarks: If (numer. /denom.) k 215 or if
(numer. /danom.) < - 215, overflow
occurs and the resulting quotient is
meaningless.

The symbol $DIV is recognized by the
assembler.

"This routine was originally written by C. Cappello.

66

7. CORE• INIAP octal address

0
Interrupt instructions 20

System addresses
100

Available for

programs

($SYS) -~ Tape buffers 31500

DEBUG

36300
File-handling routines

37416
$DIV 37500

Tape-handling routines
37770

Bootstrap loader 40000

Available for

programs

I 77777
Because of shortcomings in the Varian hardware, the tape buffers
cannot be allocated in locations above 40000. Memory that is
available for programs is therefore split into two blocks.

If DEBUG is eliminated, ($SYS) = 36300 and tape buffers are allocated
from this point.

67

8. System Loading Procedure

1) If the file-handling routines are intact:

Set P/37740
x/3""

U/0

Turn TTY on

Press SYSTEM RESET

Run

2) If the Bootstrap Loader is intact:

Set P/37770

A/40000

B/31500
X/3*

U/1O441o

Position the system tape at the load point.

Turn TTY on

Press SYSTEM RESET

RUN

3) To enter Bootstrap Loader:

Enable REPEAT

Set U/54000

P/37767

A/bootstrap instruction Repeat these operations

Press STEP until all bootstrap instructions
are entered

Bootstrap Loader:
37767/0 37774/101210

i 37770/10322 0 37775/37740
! 37771/10312Z1 37776/1000

37772/10002 0 37777/3777 4
S~37773/100010

If the system tape is not on tape drive 3, then set X to the drive number of
system tape. In this case, when using the Bootstrap Loader, set U to 104z 10,
where z = I + drive number.

68

C. Text Editor

Text Editor for the Varian 620/i

The Text Editor facilitates the preparation and modification of source-

language programs or any body of text. The format and the repertoire of

commands are similar to those on the CMS editor.

In general, three files of text are in use during editing: an input file

from magnetic tape, a core file that is kept in memory, and an output file

on magnetic tape. (If all text input originates from the teletype, then of

course no input file is used.) The core file comprises the actual text that

is available for examination and modification. The user should imagine

a "poirtier" marking his position in this file. Editing is done on a line basis,

the reference point being the current position of the pointer. Added to the

user's text are two null lines marking the top and the bottom of the file. The

line pointer may be positioned at the null top line (represented by "T"), but

this line' cannot be delted, replaced, or moved. The pointer cannot be

positioned at the null bottom line; if the bottom of the file is encountered,

"B" is typed, and the pointer is set to the last text line.

Instructions to the Editor are given in one of the three forms

(i) C

(ii) Cn

(iii) Cstring

where C represents a command, n is a positive integer, and string represents

a sequence of characters. Most commands are given by a single character;

however, in order to minimize the possibility of a serious error, two-character

* commands are used for restarting the Editor and for exiting from the Editor.

The integer n, if not specified, is aseigned the default value n= 1, and the

symbol "4'" is interpreted as n=W. (For example, L# means in effect "load

as many lines as possible. ") If an error is made in typing an instruction,

the character "a)" may be used to delete the previous character, or the

69

character "-" may be used to delete the entire line. (Two successive,'.. 's

delete the last two characters, etc.) An instruction is terminated when a

carriage return is entered. The Editor then either executes the instruction

or issues an error message. It is possible that instructions which add text

to the core file (e. g., Input, Load) could result in an overflow of the memory

area available to the Editor. If this situation occurs, the message "-FULL-"

is typed and the instruction is not completed; the specific action taken by the

Editor is detailed below with the command descriptions. When the editing of

a body of text is completed, the output file must be closed (i. e., an end-of-file

mark must be written on the tape). As described below, this is accomplished

either with a Close command or with a Quit command.

Given now are descriptions of the Editor commands and error messages,

and an example illustrating the use of most of the commands.

Commands

B -(Bottom) Move the pointer to the bottom of the core file.

C# -(Close) Store the remaining text on the output file, close the

output file, and restart the Editor. If an output file has not

yet been specified, the message "T, F=" will be typed by the

Editor (after the user types a carriage return). The user should

then enter the tape unit, file number of the output file.

Dn -(Delete) Delete n lines, starting with the current line. The

pointer is set to the line preceeding the first deleted line so

that text may then be inserted to replace the deleted lines. The

null top line T is ignored by the Delete command. (For example,

with the pointer at T, the instruction "D5" will delete the 5 lines

following T.) If the bottom is encountered, "B" is typed.

E -(End-of-File) Terminate input from the current input file. (A

new input file will be requested with the next Load command.)

Fstring -(Find) Starting with the next line, search for string and type

the line if string is found. If not found, B is typed.

70

Hsn -(Here) After the current line, insert the li.ies specified by the

last Move command (see M). If string is blank, the moved
lines are left intact at their original location; if string is non-
blank, the lines are deleted from their original location. The

pointer is reset to the line where the move originated: the first

moved line if the original lines were not deleted; the line pre-

ceeding the moved lines if the original were deleted. [An error

message will be issued if a move has not been specified or if a

text-altering command was executed between the Move and Here

commands (see M). If a FULL message is given, the Move has

been discarded. I

Istring -(Ins-!rt) Insert string after the current line. If string is

blank, the Editor goes into the INPUT mode, and a number of

lines may be inserted in succession without giving the I-com-

mand. If an empty line is typed in the INPUT mode, the EDI'I

mode is re-entered.

Ln -(Load) Load n lines of text from the input file, adding these

lines at the bottom of the core file. The pointer is set to the first

line of the new (just-loaded) text, and this line is typed out. If

the last line of the input file has been loaded, the message

"-EOF-" is also typed. As explained for Close, if the input

file is not specified, the Editor will request one. A FULL

message after a load command means that the space available

for the core file has been exhausted (and consequently fewer

than n lin'-s have been loaded).

Mn -(Move) Prepare to move n lines (starting with the current line).

Following the Move command the pointer should be positioned

at the destination, and a Here command executed. Between the

Move and the Here commands, no text-altering commands

(Insert, Delete, etc.) may take place, or the Move information

will be discarded. As with Delete, the null top line T is ignored

by Move.,

71

Nn -(Next) Position the pointer n lines forward from the current

line.

Pn -(Print) Type n lines starting with the next line. If however,

the current line is the last line, then this line is typed. The

pointer remains at the last line typed.
-(Quit) Store the remaining text on the output file, close the
output file, and return to DEBUG. As with Close, an output-

file identification will be requested if none has been specified.

Rstring -(Replace) Replace the current line with string. [An error

message will be issued if string is blank. If a FULL message

is given, the original line has been deleted, but the replacement

text has been discarded. 1

Sn -(Store) Store the top n lines on the output file and delete these

lines from the core file. The pointer is set to the new top line,

and this line is typed out. As with Close, an output-file identi-

fication will be requested if none has been specified.

T -(Top) Set the pointer to the top of the core file.

Un -(Up) Move the pointer n lines back from the current line.

Error Messages

? ? Invalid command,or invalid tape unit or file number.

-FILE- The specified input file is not a text file.

-ERROR-(TEXT LOST)

This message is issued if a non-fatal error (an error from which

the system can recover) occurs during a tape read - i. e. after a

Load command. The lost text is replaced by the characters '##0,

and loading continues until the specified number of lines have been

loaded (or until end-of-file is reached). The error message is

issued and the characters '##t are inserted for each block of

text that is lost. After the Load command has been completed

the user must re-type the lost text. (He may, of course, re-

attempt the loading.)

72

-ERROR-(FILE CLOSED)

This message is issued if a fatal (non- recoverable) tape error

occurs. If the error occurs during a read operation (Load), the

input file has been terminated. If the error occurs during a write

operation (Store, Close, or Quit), any text already on the output

file is lost.

Example

Suppose we have two files on magnetic tape, one with the text

2

3
11

12
13

and the other with the text

4
5
7
7
8.

We wish to generate a file with the integers 1-12Z, with one i'nteger per line.

In the following, underlined characters are those typed by the Editor. A

carriage-return/line-feed follows the last character for each line. (The user

need only type the carriage return; the Editor performs the line feed.

The Editor is loaded, and the execution begins:

Teletype output Contents of core file after Remarks
execution of instruction

EDIT: (For convenience commas

are used as line delineators)

L6 (car. ret.)T, F=O, 1 1, 1, 2, 3, 11, 12 Load 6 lines from
1 file 1, tape unit 0.

-t("l" was the first
line loaded.

73

Teletype output Contents of core file after Remarks

execution of instruction

E
Terminate the input file

EL(car. ret.)T, F=O, Z 1, I,Z,3,1 1,17Z,4,5,7, 7, 8 Load the entire contents
O of unit 0, file Z. End-of-

4 file was reached on the

input file. ("4" was the

first line loaded.)

M5
Prepare to move last 5

lines.

U3
Set the pointer up 3 lines.

3

HX 1,1,Z,3,4,5,7,7,8,11,1Z Move the lines here and

12'
delete them from original

1B location. (Pointer is set

to "12", the line preceeding
the first moved line.)

T
Set pointer to top

D 1,Z,3,4,5,7,7,8,11,12
Delete the first "1"

F7
Find the first line con-

F7 ' taining " 7".

R
Replace the line.

9 1Error. (No replacement

text specified.

R8C 6 1,2,3,4,5,6,7,8,11,12
A typing error ("8") was

deleted, and the "7"

replaced by a "6".

NZ
Forward Z lines.

8

I
Begin INPUT mode.

INPUT:

9 1,2,3,4,5,6,7,8,9,11,1Z Insert "9".

10 1,Z,3,4,5,6,7,8,9,10,11,1Z Insert " 10".

(car. ret.)
Type empty line to return

EDIT: rto EDIT mode.,

EDIT:

74i

Teletype output Contents of core file after Remarks

execution of inetruction

T 1,Z,3,4,5,6,7,8,9,10,11,IZ Top of file.

P#t Print everything.
I

3

I~~~ anIesat

12
B
mC-(car. ret.)T, F=1, 3 (empty) Store the text on unit 1,
EDIT: file 3, close this file,

and restart.

75

D. Additional Command for Text Editor - to'

The following command has been added to th.e Text Editor on the

Varian 620/i so that blocks of text may be read in from paper tape that has

been prepared offline:

I Command:

0 - (Offline Paper Tape) Load a block of text from paper tape,

inserting the text after the current line. (A blank frame of tape

terminates a block of text.) The pointer is set to the first line of

the new (just-loaded) text, and this line is typed out. [If a FULL

rr.essage is issued the paper tape is stopped after the first line that

could not be loaded.]

In the offline preparation of paper tape, the special characters "@" (for

deleting the pr,!vious character) and ".-" (for deleting an entire line) may be

used in the same manner as in online text editing. Each line of text is

termirated by a carriage return or by a line feed. If a line has more than 72

characters, it will be truncated to 72 characters. Empty lines are ignored.

76

E. Additional Command ior Text Editor - 'x'

The following command has been added to the Varian text editors (CRT

and TTY) to allow modifications to be made on individual lines of text:

Command:

Xcd string 1 d string 2d - (Exchange)-In the current line of text

replace string 1 with string 2. "d" is

delimiter and may be any character not

in string 1 or string 2 (except "Q" and

N, ,). The third delimiter is not

required; the cormmand will execute

properly if terminated solely by a

carriage return. [An error message

will be issued if string 1 is not found or

if the resultant line is longer than 80

characters or blank. J

Examples:

Text 1234555

Command X/555/567/C. R.

New Text 1234567

Command X/67/c. R.

New Text 12345

Command X/3/3AB/C. R.

New Text 123AB45

C -nmand X//AAA/C. R.
ýw Text AAA123AB45

77

F. Differences Between the Varian Supplied Assembler and the
Version Used at MIT/LL

1. Method of Operation

The Lincoln Laboratory version of the assembler supplied by

Varian Data Machines is a two pass assembler operating with magnetic tapes

and a CRT or teletype. The first time the source code is read in, locations

are assigned to the symbols and certain errors are detected. On pass 2 the

object or binary code is produced and a listing of the program is written on

a magnetic tape suitable for printing on IBM equipment.

If the location assigned to a symbol on pass 2 does not agree with the

location assigned on pass 1, a synchronous error results. (An example of

how this can happen is an instruction of the form

BSS N

where N is defined later in the program.) When such an error occurs, a

message is printed and the user must enter either 'C' for continue the

assembly or 'R' for restart the assembler.

2. Operating Pro-edure

The user must mount the tapes containing his source code and

those on which he wishes his binary and listing output to go. The listing tape

must be different from either the source or binary tapes which may be the

same. Up to twenty files may be assembled into one program and these may

be on different tapes.

Error messages are written out in the listing of the program and on

either the teletype or CRT.Norn-ially the crt i- 'sed, but the teletype may be

selected by flipping on sense switch 3. Input paramneters are also requested

and entered using the device selected. At any time in an assembly the sense

switch may be flipped and the next time input parameters are requested, it

will be on the opposite device.

78

3. Input Parameters

The assembler requests the input parameters as it wants them.

It will first ask for the source tape and file numbers. This list is entered

as one tape number, comma, file number, carriage return per line. A IQ'

in ple ce of the tape number returns the user " DEBUG. A 1?7 negates the

entire ar•,ument line being entered. A null line (i. e. , just a carriage return)

4 Iterminates the list of source files. The binary and listing tapes and files

are then requested. An 'R' may be typed in place of any tape number and

the entire argument list will be requested again. An IS' typed in place of

the binary or listing tape number suppresses that output file. If several

listings are to be done at a time, 'N' may be typed for the listing tape

argument after the first time and the output will be put on the next file of

the listing tape.

4. Source Statement Format

Each line of source code consists of label, instruction, and

variable fields. (The remarks field is optional.) These fields may be of

any length with a tab used to separate them. If there is no variable field

required by the instruction, there still must be a tab after the op-code.

5. Binary Point Format

In addition to the forms Varian allows the variable field to take,

the LL version of the assembler allows for a binary point format. In this

format a decimal nunmber may be entered with the position of the binary

point, specified. The result is a single word ard the programmer must know

where the binary point is.

The way to write a number in binary point format is

) x . yB ± N

The underlined quantities are required while all others are optional. 'x . y'

is the decimal fraction. 'N' specifies the position of the binary point. For

'N' equal to zero the result is the floating point number rounded to an integer.

79

If 'N' is so large that high order bits would be lost (overflow), an error

message is typed and a full word of zeros assembled.

The following error messages could occur if the format is not correct.

Message Cause Result

-I FA no . 2 zero words assembled

*AD no) 1 zero word assembled

*-BA overflow I zero word assembled

6. Shift Instructions

The mnemonics for four shift instructions have been changed

for greater consistency. They are

LLSR to LSRL

LLRL to LRLL

LASR to ASRL

LASL to ASLL

All shift instruction abbreviations are now of the form ABCD where A

indicates type (logical or arithmetic), B indicates operation (shift or rotate),

C indicates direction (right or left), and D indicates register (A, B, or

long).

7. Pseudo-Op Changes

A. MORE It no longer exists since there is no need for it.

B. STRT This pseudo-op has been added to allow a programmer

to specify at any point in his program the entry

point. Its usage is identical to that of the end

instruction, but it does not terminate the assembly.

Its value is in assemblying ,everal different files

into one program.

The entry point specified by the first STRT

80

card takes pirecedence over an END card or any other

STRT card. If more than one STRT card is used the

error message *SF is typed. If neither an END nor

a STRT instruction is used, the entry point is set to

1008 and an appropriate message is typed.

C. END The END instruction is no longer iequiri- at the end

of the program. The list of source inputs is pro-

cessed until the end of the last file. If an END card

is present, however, it terminates the assembly

where it occurs.

8. Error Handling

Programming error messages are described on page 299 of the

manual provided by Varian Data Machines. Errors that occur during the

operation of the assembler such as tape errors result in self-explanatory

error messages being typed out. Tape errors close all files that have been

opened during the asse: ibly; the assembler then returns to ask for new

input parameters. (If a write error occurs, check to see that the tape has

a write ring.)

9. Symbol Table

The assembler automatically puts in the symbol table of every

program a list of commonly used system locations. These locations have a

symbol beginning with a t$I associated with them. Thus a programmer may

ruse these symbols in his program without defining them or caring where

system routines are located. (To avoid co-nflict, use of symbols beginning

with ;$ should be avoided). These symbols will be printed in the symbol

table of every program.

81

G. Tape Splice

Purpose: To copy a number of formatted files - in any
order - from one magnetic tape to another.
(Formatted files are those written with calls
to $OPEN, $DATA, and $CLOSE and include
text files written by the Editor andbinary files
written by the Assembler.)

Programmer and Date: I. Richer, May 1970

Input Parameters: Tape and file numbers entered via keyboard.

Sense Switch Settings: SS3 - OFF for operation from CRT terminal
ON for operation from teletype.

Locations Used: 1008 - 7778

Usage: In response to messages written on the CRT
screen (or on the telet'ype if SS3 is set), the
user enters the following octal parameters:

OUTPUT TAPE (0-3)
INPUT TAPE (0-3)
1st OUTPUT FILE
INPUT FILES:

In responbe to the INPUT FILES message, the
user enters a list of files in any order. Each
parameter (including each input file number) is
terminated by a carriage return. The input-
file list is terminated by a blank line - i.e. by a

line containing only a carriage return. At any
point, the character 'Q' returns the user to
DEBUG; 'R' rewinds the tapes and restarts the
program. If an invalid character (or an invalid
tape number),is entered a '? ' is typed by the
program, and the parameter must be re-entered.

After the final carriage return, the INPUT FILES
are copied from the INPUT TAPE to the OUTPUT
TAPE , with the first file on the list copied onto
the 1st OUTPUT FILE, and the remaining files
copied in sequence. After each file is copied, the
output tape is backspaced and the file is verified
(re-read). If a tape error is encountered, copying
is halted and the appropriate error message is
typedt. When copying is complete, the program
types the number of the next output file and requests
more input files for copying between the same
input and output tapes. The user then may enter
another list of input files, may restart the program
(e.g. , in order to re-specify the input or output
tape),or may return to DEBUG.

82

Error Messages: ?

-Invalid character (parameter must be
re-entered)

READ)
WRITE ERROR-COPYING HALTED
VERIFICATION AT INPUT FILE N

-Tape errors encountered while copying file
number N.

83

H. Tape Duplicate

Purpose: To copy, record-for-record, a number of files

from one magnetic tape to another.

Programmer & Date: I. Richer, May 1970.

Input Parameters: Tape and file numbers entered via keyboard.

Sense Switch Settings: SS1 - OFF for normal operation

ON to terminate copying.

SS3 - OFF for operation from CRT terminal

ON for operation from teletype.

Locations Used: 1008- 31000s

Usage: In response to messages written on the CRT
screen (or on the teletype if SS3 is set), the user

enters the following octal parameters:

OUTPUT TAPE (0 - 3)

INPUT TAPE (0 - 3)

FIRST FILE

LAST FILE

The character 'Q' returns the user to DEBUG. If

an invalid character (or an invalid tape number) is

typed, the OUTPUT TAPE will again be requested,
and all input parameters must be re-entered. Each

parameter is terminated by a carriage return.

After the final carriage return, the program copies,

record-for-record, all files from the FIRST FILE

through the LAST FILE, inclusive, from the INPUT

TAPE to the OUTPUT TAPE. After each record

is written the output tape is backspaced and the

record is verified (re-read). If a tape error is

encountered-either on reading, on writing, or on

verifying - the operation is re-tried. If four errors

occur in the same record, an error message is

typed, but copying continues. SS1 may be set to

terminate the coping. When copying is complete,

84

the tapes are rewound.

Error Messages: ? ?

-Invalid character (the first i iput parameter
will then be requested)

IREAD
WRITE ERROR - FILE N
VERIFICATION

-Four tape errors were made in copying
a record in file number N.

85

I. Tape Copy

Purpose: To copy either a paper tape file or a formatted
magnetic tape file onto either a paper tape file
or a formatted magnetic tape file. (Formatted
files are those written with calls to $OPEN,
$DATA, and $CLOSE and include text files
written by the Editor and binary files written
by the Assembler.)

Programmer and Date: I. Richer, May 1970

Input Parameters: Input medium and output medium (magnetic or
paper tape). If magnetic tape, tape and file
numbers.

Usage: In response to messages written on the teletype,
the user enters the letter m to designate
magnetic tape or the letter p to designate paper
tape. If magnetic tape is specified, the program
requests tape (0-3) and file number which are
entered separated by a comma and terminated
with a carriage return. At any point, Ihe
character 'Q' returns the user to DEBUG. If
an invalid character (or an invalid tape
number) is entered, a '? ' is typed by the
program, and the parameter must be re-entered.
If a tape error is encountered, copying is
halted and the appropriate error message is
typed. When copying is complete, the user
then may enter another input list, or may
return to DEBUG.

Error Messages: ?
- Invalid character (parameter must be

re-entered).

WRITE ERROR - COPY TERMINATED

READ ERROR - COPY TERMINATED

Tape errors encountered while
copying file.

86

J. List/Dump

Purpose: To copy a file on a Varian user tape to a file on another
tape in such a format.that it can be printed on the IBM
360/40.

Programmer: C. D. Cappello

Date: May 1969

Locations used: 1008 - 16258

Input parameters:

1. The numbers of the output tape and file.

2. The numbers of the tape and file to be copied.

Usage: In response to messages written on the teletype the user
enters the input parameters in octal. An 'N' in place of
the output tape and file numbers specifies the next file on
the specified tape to be used. A 'Q' returns the user to DEBUG.

Error messages:

-An illegal character has been
typed as an input value. Both the
tape number and the file number
must be entered again.

TAPE CHOICE - The input and output tapes mus, be
different. Re-enter the input -,-,-a-
meters.

FILE TYPE ILLEGAL - At present only file types of binary
and text are accepted; hence, any
other type illegal. Re-enter the input

parameters.

RECORD LOST - A read error has occurred. Data is
lost but the program continues.

UNRECOVERABLE
READ ERROR - A read error has occurred and the

program cannot continue reading. A
file mhark is written on the output tape
and the program restarted.

87

WRYTE ERROR - A write error occurred. A file mark
is written and the program restarted.

NO WRITE RING - Check to see that a write ring is in and
the write enable light on.

Remarks: The tape and file numbers of the tape to be copied are
printed at the top of the output. Text files are written
in a listing format and binary files are printed as an
octal dump.

88

IV. GENERAi.- PURPOSE SUBROUTINES

A. PI tting
I. INTRODUCTION

The plotting routines facilitate the display of data in graphicil

form on the Computek CRT terminal, which is interfaced as an I/O device

with the Varian 620/i computer, and on the X-Y plotter, which serves as an

offline facility. These routines are designed to eliminate as much as
possible the tedious chcres associated with graphing and still retain enough

flexibility to accommodate a ,wide variety of graphs. With these routines

the user need not concern himself with specific commands directed to the

CRT; the programs will automatically:

a. Scale axes,

b. Position axes on the CRT screen,

c. Place either grid marks or grid lines on axes,

d. Label axes and title graphs,

e. Number axes limits,

f. Perform linear transformation of data coordinates to screen
coordinates,

g. Plot data curves on grids.

The versatility of these routines is indicated by the options available to the

user:

a. One set of axes may be displayed full screen or two jets of
axes may be displayed with one in the top "and the other in
the bottom half for direct comparison.

b. Axes limits may be specified or determin% , the limits of
data to be displayed.

C. Data points may be placed on the axes with or without lines
joining the points.

d. Several sets of data may be displayed on the same axes, each
set having points marked with a different character.

e. The x coordinates of data may be specified explicitly or
implicitly in the form of an initial value and uniform increments
along the x axis.

89

f. The point coordinates may be stored in a buffer and plotted
consecutively or may be individually added to a set already
displayed on the screen.

When it is desired to graph the contents of a buffer, an executive routine is

available which already includes the appropriate calls to the plotting

routines. The characteristics of this executive routine are:

a. Screen is initially erased.
b. Only one curve on a full screen graph is drawr.

c. Y coordinates consist of data values.

d. X coordinates are stepped by 1 from an initial value of 0.

e. All N points are plotted.

f. N- 1 appears as upper limit of X.

g. Minimum value of data is lower Y limit.
h. Maximum value of data is upper Y limit.

i. Item name appears as ordinate label.

j. A horizontal line at Y= 0 is drawn if MIN < 0 < MAX.
k. Ordinate numbers are divided by the scale in the Item Block.

If 1 < scale g 32767; otherwise the numbers are not scaled
and a message identifying the scale is written on the screen.

2. USAGE

Efficient programming and ease of user operation dictate that

the input parameters be transferred to the plotting routines in block form
with only addresses of the blocks passed as arguments of a CALL instruction.
Since the input parameters fall naturally into two distinct categories - a set

associated with the display of coordinates axes and a set associated with the

display of data points - two separate block forms are used. These blocks,
which must be in the user's program, are designated as an axis block, BAX,

and a data block, BPLT, and are described in Appendix 1. The advantage of

using two separate block forms is that curves from several different data

blocks can conveniently be placed on the axes described by one axis block.

As a general rule, the user's blocks are left unchanged by the plotting sub-
routines; this rule is violated only in the following cases. Both PLOT and

90

PJOIN fill EPLT+7 and BPLT+8 with the last data point coordinates.

PLIMIT fills BAX+Z and BAX+3 with extrema of Y coordinates of data and,

if C(BPLT) ý 0, fills BAX and BAX+l with extrema of X coordinates of data.

Input information to the executive routine is a special block form described

in Appendix 1i.

The plotting routines are used to display graphs on the CRT and to

punch paper tape for drawing graphs on the X-Y plotter. For the latter use,

PPPP SET 1 must be inserted into the main program at assembly time and

both SS3 and the paper tape punch must be on at execution time; these

conditions, however, do not affect graphs displayed on the CRT. The paper

tape created will draw only data curves on the plotter. Axes for these curves

are available on a separate paper tape punched using a special program for

that purpose.

On the CRT screen, though, axes, labels, numbers, and titles appear

with the curves. There are separate routines for displaying axes and for

drawing curves; this provides the user with the flexibility of placing several

curves on the same set of axes. However, it requires him to make a

minimum of two separate calls to draw a complete graph. The user may

select either one graph drawn full screen, top half screen, or bottom half

screen. The last two choices are provided so that two separate graphs can

be displayed at the same time for direct comparison. The screen is not

automatically erased prior to the placement of an axis; the user must either

insert the instruction CALL $DCLR in his program or type the page key or

the erase key on the CRT keyboard in order to erase the screen.

If PPFU SET 1 is included in the user's program at assembly time,

the graphs will be drawn full width of the screen. Otherwise, the graphs

are offset to the right to allow room for printing out information with DEBUG.

These routines occupy 948 memory locations anywhere in core. If paper

tape output is desired so that PPPP SET 1 is in the user's program, these

routines occupy 1033 memory locations. In order to reduce the possibility

91

of a label conflict, all labels of the plotting routines begin with the letter P,

while the I/O routines begin with the letters $D. The user is urged to avoid

beginning any of his labels with those letters. No indirect pointers and no

literals are used in order that these routines be fully compatible with any

program. No error messages are included with these routines. The

program will continue to interrogate the CRT until a ready state is sensed;

only then will it send output to the CRT.

3. EXAMPLES

Outlined below are typical instruction sequences illustrating the

usage of the plotting routines. Figures 1-4 are the actual graphs displayed

by examples a-d.

(a)

CALL $DCLR ERASE SCREEN
CALL PLIM,A1, D2 LET DATA DETERMINE GRAPH LIMITS
CALL PAXAl DRAW AXES
LDA =5 STEP INITIALLY FROM X= 5
STA D2+2
CALL PLOT,A1,D2 PLOT IST 10 POINTS
LDA =60 STEP FROM X=60
STA D2 +2
CALL PJOIN, A 1, D2 JOIN CURVE ONTO ITSELF
CALL PHOR, A1, 0 DRAW HORIZONTAL LINE AT Y= 0
CALL PHOR, A1, 60 DRAW HORIZONTAL LINE AT Y=60
CALL PMESG, 600, 770, MSG1
LDA = 3
CALL PONV OUTPUT NUMBER
CALL PMESG, 600, 750, MSG2
LDA =10
CALL PONV OUTPUT NUMBER
CALL $PAUSE, =0 ENTRY TO DEBUG

MSG1 DATA 'TAPE= ', 0
MSG2 DATA 'FILE= ', 0
Al DATA 0, 100,0,0, 1,ABS, ORD, TITLE, 1, 1
D2 DATA 0, Y1, 0, 5, 0, 1, '+',0, 0
Y1 DATA 0,-10, 150,60,80,40,120,-20,-30,0
ABS DATA 'ABSCISSA',0
ORD DATA 'ORDINATE', 0
TITLE DATA 'GRAPH TITLE', 0

92

4. ,I s ,. o

T*'E. 3
FILE- 10

MINATE GRAPH TITLE
60.0.0

ii

0

0 DCISSA uu.e

Fig. 1. Example (a).

93

(b)

GALL $DCLR ERASE SCREEN
CALL PAX,A3 DRAW LOWER AXES
CALL PLOT,A3, D1 PLOT DATA
CALL PAX, A2 DRAW UPPER AXIS
CALL PLOT,A2,D1 PLOT DATA
CALL PINV, A2 READ CURSOR POSITION
CALL PINV,A2 READ CURSOR POSITION
CALL $PAUSE,= 0 ENTRY TO DEBUG

A2 DATA -50,200, -50,200,2,ABS, ORD, TITLE, 1, 1
A3 DATA -50,200. -50, 200, 3,ABS, ORD, TITLE, 1, 1
DI DATA X1,YI,0,0, 10, 1,0, 0, 0
Xl DATA -20, 10,20,30,40,50,60,70,80, 150
YI DATA 0, -10,150,60,80,40,120, -20,-30, 0
ABS DATA 'ABSCISSA', 0
ORD DATA 'ORDINATE', 0

TITLE DATA 'GRAPH TITLE', 0

(c)

CALL $DCLR ERASE SCREEN
CALL PAX,A4 DRAW AXES
CALL PLOT, A4, D4 PLOT DATA
CALL PMESG, 850,770, CDATE PRINT DATE
CALL PMESG, 600,702, LABEL PRINT IDENTIFYING LABEL

A4 DATA 0,255,)-40. B8, 0, -1,ABS, ORD, 0, 1,)1.B8
D4 DATA 0, Y,, 0, 1, 256, 1, 0, 0, 0
Y4 BSS 256
ABS DATA 'NO. OF PTS. ', 0
ORD DATA 'SPECTRUM (DB)', 0

CDATE DATA 'AUG 24, 1972', 0
LABEL DATA 'FREQUENCY 0-500 (HZ)', 0

94

ORDINATE GRAPH TIU.

IS O
130.0

33.0P0*****n 14SI .S 2tQ*0.0Sso oo

0 20 00 • 1,0

ORDINATE GRAPH Ttl

200.

"50. 00 AISCI SSA 200.0

Fig. 2. Example (b).

95

AVG 24. 107a

VECTRWI (06) FREOUENCY 0-50W £OIQO1~ - - - - - 6-148i~221

1* Ir \

I -- - -.0--0

0LO wPS

Fig -. - -n- -(c-

96 - - a

(d) Prior to the execution of the following instructions, the buffer is

filled with data representing an amplitude modulated carrier.

LDX = ITEM ITEM ADDRESS
CALL PG GRAPH BUFFER CONTENTS
CALL $PAUSE, =0 ENTRY TO DEBUG

TTEM DATA 'TEST', 01700, 161, 0, 0, BUFF
BUFF BSS 161

CDATE DATA 'JUL 20, 1972 ' 0

97

,13..1, 3. 1q1

TEST
0.M

*1 I I
0 NO. OF PT, e,,

Fig. 4. Example (d).

98

PG Executive subroutine to graph the contents of ai•- bnffer.

Calling Sequence: CALL PG

Input Parameters: C(X) = address of input block

Output Parameters: None

Registers Used: A, B, X, and OF

Remarks: A set of y coordinates stored in a buffer is

plotted against a buffer index value on a set of

axes drawn full screen, where the y axis limits

are the extrema of the data values. A

horizontal line at the value y=O is drawn,

provided it Ries within the graph limits. The

item name appears as the ordinate label. An

identifying date or label at the upper right

corner of the screen will be displayed if the

user has included the ASCII code for this

(terminated by a 0) with label CDA. TE; e.g.,

the user must supply: CDATE DATA 'JAN 1

1972 1, 0 . If location 758 contains the address

of ITEM and if the address following the input

block (ITEM+7) contains the address of PG,

then typingp ITEM$ on the I/O terminal in

DEBUG environment will display the buffer on

the CRT screen. The input block is described

in Appendix II.

99

PAX Subroutine to draw one set of axes on the CRT.

Calling Sequence: CALL PAX, BAX

Input Parameters: None

Output Parameters: OF = 0

Registers Used: OF

Remarks: One ret of axes specified in the axis block BAX is

drawn either full screen, top half screen, or bottom

half screen. Axes are offset to. the right to leave

room for I/O with the CPU. The screen is not

initially erased; to erase the screen, user must

either insert CALL $DCLR in his program or type

page key or erase key on the CRT keyboard prior to

drawing axes. User may specify either small tick

marks on each axis or full grid lines; in either case

each axis will be divided into 10 intervals. Each

axis ig numbered in decimal by its lower limit and

its upper limn.it divided by the scale for that axis

(scale > I) with the results truncated to 4 digits

(5 if result > 9999). Grapiý title and labels for each

axis may be provided. Labels and title texts are
terminated by a zero word. Abzt 60 character

spaces are available for title and ordinate label.

CRT cursor is returned to its original position after

this routine is executed.

100

PLOT Subroutine to plot a set of data points on the CRT

Calling Sequence: CALL PLOT, BAX, BPLT

Input Parameters: None

Output Parameters: OF = 0

Registers Used: OF

Sense Switch Settings: SS3 on if paper tape output is desired in addition to

CRT display.

Equipment: Paper tape punch on if paper tape output is desired

in addition to CRT display.

Remarks: A set of N data points specified in the data block

with pointer BPLT is displayed on the axes specified

in the axis block with pointer BAX. The Y coordi-

nates of data are stored in consecutive locations.

The X coordinates of data either are stored iai con-

secutive locations or are uniformly spaced from an

initial value with a specified spacing. Points are

marked with any specified symbol whose ASCII code

is given in BPLT + 6. (Note that to mark a point

* with a dot, C(BPLT+6) = 0, since a normal period

does not center properly.) User may specify that

adjacent plotted points be joined with straight lines.

Y values of data outside the Y limits are replaced

by values just beyond the nearest Y limits. Data

points with X values outside the X limits are not

plotted. Repeated executions of PLOT may be made

after any execution of PAX, in order to place

several curves on one set of axes. CRT cursor is

returned to its original position after this routine is

executed.

101

PJOIN Subroutine to plot a set of data points on the CRT and

join this set with the previous set plotted from the

same data block.

Calling Sequence: CALL PJOIN, BAX, BPLT

Input Parameters. None

Output Parameters: OF = 0

Registers Used: OF

Sense Switch Settings: SS3 on if paper tape output is desired in addition to

CRT display.

Equipment: Paper tape punch on if paper tape output is desired

in addition to CRT dis play.

Remarks: A set of N data points specified in the data block with

pointer BPLT is displayed on the axes specified in

the axis block with pointer BAX and is joined with the

point whose coordinates are (C(BPLT+ 7),

C(BPLT + 8)). On exiting from this routine and

routine PLOT, the coordinates of the last data point

are stored in BPLT+7 and BPLT+8; hence, this

routine enables the user to add on a set of points to

an existing curve on the screen. The Y coordinates

of data are stored in consecutive locations. The X

coordinates of data either are stored iii consecutive

locations or are uniformly spaced from an initial

value with a specified spacing. Points are marked

with any specified symbol whose ASCII code is given

in BPLT+6. (Note that to mark a point with a dot,

C(BPLT+6) = 0, since a normal period does not

center properly.) User may specify that adjacent

plotted points be joined with straight lines. Y values

102

of data outside the Y limits are replaced by values

just beyond the nearest Y limits. Data points with

X values outside the X limits are not plotted.

Repeated executions of PJOIN may be made after any

execution of PAX in order to draw a curve, one point

or any other number of points at a time. Before the

first use of PJOIN, C(BPLT+7) and C(BLT+8) must

be initialized by either having prior use of PLOT

with the same blocks or by storing an abscissa out-

side the X limits in BPLT+7; in the latter case

PLOT and PJOIN perform identically. CRT cursor

is returned to its original position after this routine

is executed.

103

PLIMIT Subroutine to use data extrema for determining

graph limits.

Calling Sequence: CALL PLIMIT, BAX, BPLT

Input Parameters: None

Output Parameters: OF = 0

Registers Used: OF

Remarks: Extrema of both X and Y data specified in the data

block with pointer BPLT are stored as X and Y

limits, respectively, in an axis block with pointer

BAX. If X coordinates are uniformly spaced rather

than explicitly stored, then X limits in the axis

block remain unchanged. CRT cursor is returned

to its original position after this routine is executed.

104

PHOR Subroutine to draw a horizontal line across a graph

at a given Y position.

Calling Sequence: CALL PHOR, BAX, Y

Input Parameters: None

Output Parameters: OF = 1

Registers Used- OF

Remarks: Y is the data ordinate value specifying the position

of the horizontal line which is to be drawn on a set of

axes specified by the axis block with poixntfr BAX.

The line is drawn only if Y lies between the lower Y

limit and the upper Y limit specified in the axis

block; otherwise no action is taken. When the line

is drawn, it is numbered in decirmal by the value Y

divided by the scale for the Y axis (scale > 1) with

the results truncated to 4 digits (5 if result > 9999).

CRT cursor is returned to "ts original position after

this routine is executed.

105

PINV Subroutine to read cursor position coordinates, map

to data coordinates, draw dotted lines from cursor

position to axes, and print on the CRT the values of

the data coordinates divided by axis scalQ.

Calling Sequence: CALL PINV, BAX

Input Parameters: None

Output Parameters: C(A) = data abscissa equivalent of cursor location

C(B) = data ordinate equivalent of cursor location

OF= 0

I Registers Used: A, B and OF

Usage: When PINV is execseted, the CPU is initially waiting

for any input from the CRT. During this time, the

operator may position the cursor with cursor

positioning keys on the keyboard. After the cursor

is at •'ie desired position, the operator types any

alphanumer-ic key on the CRT. Dotted lines are then

drawn from the cursor position to the axes, and the

values of the data coordinates divided by the

appropriate scale for each axis are displayed.

Remarks: Although the screen has a 10 bit resolution, the

cursor position is read to only 8 bit resolution.

Since graphs occupy something substantially less

than full screen, overall accuracy of the cursor

reading feature is about 1% of full scale. CRT

cursor is returned to its original position after this

routine is executed.

106

PMESG Subroutine to write a message on the CRT at a

specified location.

Calling Sequence: CALL PMESG, XCRT, YCRT, MESSAGE ADDRFSS

In put Parameters: None

Output Parameters: None

Registers Used: None

Remarks: Message address is a pointer to text in ASCII code

which is to be outputted. Text is terminated by a

zero word. Coordinates.. (XCRT,YCRT), are the

CRT coordinates specifying the location of the lower
left corner of the initial character in the message.

Restrictions on these coordinates are

0 < XCRT < 1011, 0 V YCRT c 788, where (0,0)

are the coordinates of the lower left corner of the

screen. A single character lies in a cell of dimen-

sion 12 points wide and 20 points high; thus, there

is room for 40 lines with 85 characters on each line.

A frequent use of this ro-tine is to identify a para-

meter associated with a graph on display. In that

case a message, such as 'FREQUENCY = ', could

be printed a little above the top of the graph. Then

the value of that parameter should be loaded into

the A register, and a CALL PONV executed to print

the decimal value cf that parameter on the screen.

Screen coordinates locating corners of the graphs

drawn are given in Table 1.

107

PWRT Subroutine to write a message on the CRT at the

cUw sor location.

Calling Sequence: CALL PWRT

* Input Parameters: C(X) = MESSAGE ADDRESS

Output Parameters: None

Registers Used: A, X

Remarks: Message address is a pointer to text in ASCII

code which is to be outputted. Text is

terminated by a zero word.

108

PONV Subroutine to output decimal value of A register on

the CRT at cursor location.

Calling Sequence: CALL PONV

Input Parameters: C(A) = number

Output Parameters: None

Registers Used: None

Remarks: A frequent use of this routine is to print the value of

a parameter on the screen immediately after writing

a message with PMESG which both identifies the

parameter and positions the cursor to the next

character cell following the message.

109

POSV Subroutine to output the scaled value of the B

register on the CRT at the cursor location

(i.e., output = C(B)/C(A)).

Calling Sequence: CALL POSV

Input Parameters: C(A) = Scale

C(B) = Number

Output Parameters: None

I Registers Used: A, B, X, OF

I Remarks: A frequent use of this routine is to print the

-! value of a non-integer parameter on the screen

immediately after writing a message with

PMESG which both identifies the parameter and

positions the cursor to the next character cell

following the message. The results are

truncated to 4 digits (5 if result > 9999).

S~110

PEXTRM Subroutine to determine extrema of a data set in

consecutive memory locations.

Calling Sequence: CALL PEXTRM

b-3put Parameters: C(A) = pointer to data set

C(X) = number of data words

Output Parameters: C(A) = maximum of data set

C(B) = minimum of data aet

C(X) = 0

OF = 0

Registers Used: A, B, X and OF

3'

ii

111

PHSTOP Subroutine to punch a ckaracter on paper tape which

will stop the paper tape reader for the X-Y plotter.

Calling Sequence: JS3M PHSTOP

Input Parameters: None

Output Parameters: None

Registers Used: None

Remarks: A stop paper tape reader command between graphs
is necessary in those situations in which the user

wants to punch several graphs on a single paper tape

and yet wants to display them on different charts.

Also, without this command after the last graph, the

paper tape will wind off entirely from the feed reel

on the X-Y plotter.

112

APPENDIX I

Information blocks to the plotting subroutines have the following form,

where BAX is a pointer to an axis block and BPLT is a pointer to a data block:

BAX+O: XL = Lower Bound on X Graphed

+1: XU = Upper Bound on X Graphed

+Z: YL = Lower Bound on Y Graphed

+3: YU = Upper Bound on Y Graphed

+4: CODE = 1 1, One Graph Drawn Full Screen

*2, Top Graph of Two Graphs Drawn

= * 3, Bottom Graph of Two Graphs Drawn

+ Indicates Short Markers Will be Drawn
on Each Coord. Axis

- Indicates Grid Lines Will be Drawn

+5: ABS = Address-of Abscissa Label (Terminated by 0)

0 = Default on Label

+6: ORD = Address of Ordinate Label (Terminated by 0)

0 = Default on Label

+7: TITLE = Address of Title Text (Terminated by 0)

0 = Default on Title

+8: X SCALE = Scale on X Axis

+9: Y SCALE = Scale on Y Axis

'AR

K 113

BPLT+0: X ARRAY = Address of First X Coordinate

= 0, X Values Will be Stepped

+1: Y ARRAY Address of First Y Coordinate

+2: XMIN = First X Value when Stepped (Ignored if not
Stepped)

+3: DELTA = X Spacing when Stepped (Ignored if not Stepped)

+4: N = Number of Points to be Plotted

+5: ARG = I, Lines Join Adjacent Plotted Points

= 0, No Lines Drawn

+6: 'SYMBOL' = ASCII Code of a Single Character to Mark
Points

= 0, Point Marked with a Dot

+7: STORAGE (PLOT and PJOIN Insert X Coordinate of Last
Point)

+8: STORAGE (PLOT and PJOIN Insert Y Coordinate of Last1• Point)

114

APPENDIX II

The information block to the executive plotting routine, PG, has the

following form, where ITEM is the pointer to the input block:

ITEM+O: 'NAME' 4 ASCII characters packed into 2 words to label
ordinate

+2: FORMAT = position of binary point of data in 2.,s
complement form in bits 15-6.

+3: N = buffer length

+4: Ignored

+5: Ignored

+6: ARRAY = buffer address.

The form of this input block is identical to the form of the input blocks to a

receiver simulation program written on the Varian 620/i. For that reason

there are some unused locations in the input block to the executive plotting

routine.

1

115

TAB LE I

CRT Coordinates and Plotter Coordinates of Graph Corner3

Lower Left Upper Right
Code Corner Corner

CRT Full Width 1 80,47 1020,687

2 80,447 1020,767

3 80,47 1020,367

Partial Width 1 320,47 1020,687

2 320,447 1020,767

3 320,47 1020,367

PLOTTER 1 0,0 5600, 5120

2 0,0 5600,5120

3 0,0 5600, 5120

"-1

S~116

-. l l ' l •- , , •

B. Mean and Variance

Purpose: To compute mean and variance of sete of data in
consecutive locations. An initializatioi, subroutine,
an execution subroutine, and a finalization subroutine
are provided.

Programmer and Date: J. Michaud, July 1970

Calling Sequence: CALL #JIN, BLOCK (initialization roritine)
CALL f.EX, BLOCK (execution routine)
CALL #JFI, BLOCK (finalization routine)

where BLOCK is the starting address of a block
of parameters.

Input Parameters: C(BLOCK+0) = pointer to the data array
C(BLOCK+ 1) = m - number of points in the array

Output Parameters: From #JEX:

C(BLOCK + 2) = n current total number of data
n points

C(BLOCK+4)B data (double-precision)

C(BLOCK+ 5)d n
C(BLOCK+ 6) data 2 (triple-precision)
C(BLOCK+7)

OF set if n > 32767 = 215_I (OF reset otherwise)

From # JTI:

C(BLOCK+2) = n total number of data points
C(BLOCK + 3)1) mean (double precision, Bl5)
C(BLOCK+ 4)
C(BLOCK+ 5) = 0
C(BLOCK+ 6)• variance (double- precision integer)C(BLOCK+ 7)

Registers Used: OF used by #JEX

Locations Used: 3558, anywhere in core.

Usage: Subroutine #JIN sets to zero locations BLOCK+2
through BLOCK+7.

Subroutine #JEX updates the current total of data word
summed since the last call to #JIN, computes the runn
sum E data, and computes the running sum L data 2 .

Subroutine #JFI computes the mean and variance
according to the following formulas:

1
mean = - Z datan

variance = 1 [Edata 2 - (mean)(E data)]

117

where the mean is in standard double-precision
format (second word always positive) with the
binary point to the right of the first word, and
the variance is a double-precision integer.

Remarks: No indirect pointers and no literals are used in
"order that these subroutines be fully compatible
with any program.

Repeated calls to #JEX may be made with the
same or different input parameters before calling
#JFI.

The user should check OF on return from #JEX
since erroneous results occur if n > 32767.

118

C. Amplitude Protability Density

Purpose: To compute the amplitude probability density
of sets of data in consecutive locations. An
initialization subroutine and an execution
subroutine are provided.

Programmer and Date: C. Cappello, July 1970

Calling Sequence: CALL BINIT, BLOCK (initialization
routine)

CALL BMAIN, BLOCK (execution
routine)

Input Parameters: C(BLOCK+0) = pointer to input array

C(BLOCK+I) = number of points in input
array

C(BLOCK+2) = upper bin limit

C(BLOCK+3) = ignored

C(BLOCK+4) = pointer to the bins

C(BLOCK+5) = lower bin limit

C(BLOCK+6) = bin width

C(BLOCK+7) = storage (BINIT fills with
number of bins)

Registers Used: A, B, X, OF

Locations Used: 1278, anywhere in core

Usage: Subroutine BINIT .-alculates the total number
of bins from the formula:

N [= + upper bin limit - lower bin limitb d

and stores this in BLOCK+7. The symbols F -1
indicate that the rounded up integer value of
the expression is to be used. In the above
formula the 2 is there to accommodate numbers
outside of bin limits. The user must leave
enough room in core to accommodate all the
bins. It is suggested that the user should plot
the bin contents with the executive plotting
subroutine for rapid examination.

N19

Remarks: After initialization, repeated c-ls may be
made to the execution reutine. The user
should check OF on return to verify that no
single bin overflowed. No indirect pointers
are used.

I1,'I

{

r12

D. FFT Spectrum Averaging

Purpose: To average a number of blocks of FFT output data
in order to increase the accuracy of spectral
analysis plots.

Programmer and Date: M. Saklad - February 1972

Input Parameters: C(C#DN) = NFFT = number of data points per block

C(C#DN+2) = NB = number of FFT output dataBLOCK
blocks to be averaged where CfDN is accessed by
0 DISP.

NBLOCK(MAX) = 3276710.

NFFT(MAX) = 40008 = 204810.

NFFT must be a power of 2.

Locations Used: 2768 locations included in the FFT spectrum analysis

program RESP. 60008 = 307210 = 3*(NFFT(MAX)/Z)

locations are used as a work area in lower core.
These locations are not initialized unless RBLOCK
averaging routine is to be called. This area is in
addition to the 100008= 409610 = 2*NFFT(MAX)

locations normally utilized by RESP.

Usage: RBLOCK, which is incorporated as a subroutim Af
the FFT spectrum analysis program RESP, is executed
only if NBLOCK > 0. The resultant spectrum

analysis will be displayed upon completion of the
averaging. Time waveforms and phase plots are
available oply for the default condition of NBLOGK = 0

in which the spectrum analysis is performed on only
one block of data.

Example: In order to average 10010 = 1448 blocks of input data

consisting of 102410 = 20008 data point--, the following

data must te provided:

@disp/xxxx 2000; # of points per block (NFFT)•

xxxx/xacx; input buffer address
xxxx/xxxx 144 • of blocks to be averaged

(NBLOCK)

p/start program start

c

121

Error Messages: None. No error checking has been implmented
for negative values of NBLOCK.

Remarks: Upon execution, RBLOCK terminates the program
table with the MULTICHIP display program; if the
programs subsequent to MULTICHIP are desireJ,
the simulation program must be reloaded since the
RB LOCK work area utilizes the same core locations
as these programs.

If it is desired to see time waveform plots and/or
phase plots, NBLOCK may be changed to zero and

back again without problems. However, the data
examined will be lost to the next averaging unless
the change from NBLOCK = 0 to NBLOCK = N is

made immediately after the time waveform is plotted.

Program Operation: After a sufficiert number of input points (specifiedas the # of points per block) are available they are
discrete Fourier transformed by the FFT routine,
TRANS. The energ; - in each frequency band is
obtained by calculating R2 +17- (real? plus imaginary2

components). The energy in each frequency band of
each block is added to the previous values. These
values are calculated in double precision floating
point to preserve accuracy and dynamic range. After
this is done the specified number of times, the totals
are normalized by the number of blocks in the average
and converted to dB by taking 10 logl 0 (average) where

the average is considered to be a BIS value. The
equivalent bandwidth of each filter is given as (sampling
rate/# of points per block); however, the program
does not normalize by the filter bandwidth to give a
true spectral density.

For a numerical example, assume the input data
consists of independent samples of zero mean poise
with standard deviation ao BO (or a1 5 = ao*2- 5 B15

if the data is considered B15). Then the spectIum is
flat with height, Hc = (# points per block)-- 15 I

enough blocks are averaged, the resultant spectral
plot will be close to H0 . If ro = 4096 (Ci5 = 2-3), H0

will be (# of points per block)*2- 6 ; this numberconverted to dB, 10 logl 0 (# of points per block)2- 6

is actually plotted. The standard deviation of the
error for each spectral point will be approximately
7Ho-- Ho* (2/# blocks averaged)1/2. Hence averaging

0 aH
100 blocks will yield f-Ay- 0. 14 corresponding to

68% of the points falling within 0.6 dB (10 log 1. 14)
of the expected spectral level. This error analysis is
true also for other than independent input samples.

E. Miscelaneous

The subroutines below are well enough conmmented in the listings

that a brief description is adequate. For more complete information,

reference should be made to the listings. In addition to corrections applied

to the mathematics subroutines, error returns were deleted.

DP Double .precision mathematics,
XSINXSIN Sine and cosine (modified to use table lozkup),XCOS

XRCOS Cosine with input angle in revolutions BI5,

TARC Phase angle of a complex number,

XSQRT Square root,

AGSQRT Pseudo-double-precision integer square root,

XLOG Logarithm,

DBEX Decibel conversion,

$OF Routine which sets A register to saturation level if
overflow occurred; this is frequently used after
an addition,

-STR Buffer transfer,

K7ADD Block data adder,

K2CALL Block data adder with scaling,

FUNC Generalized function generator,

AGRAN Random number generators,

#GGAUS Gaussian random number generator,

#GP Random bit generators,

TRAM FFT generator.

123

V. SIMULATION PROGRAMS

A. DEBUG Commands for Use with the Simulation-Control Program

In order to simplify the use of the Simulation Control Program, a

number of commands which refer symbolically to simulation parameters have

been added to DEBUG. Communication between DEBUG and the Simulation

Control Program is via the Item Table which is specified at assembly time.

A parameter on the Item Table is described by a symbolic name (up to 4

characters) and includes information on the mode (e. g., octal, floating point),

the minimum and maximum allowed values, and the CRT display routine for

the parameter. The Item Table is loaded into memory along with the

Simulation-Control Program; restarting DEBUG clears the Item Table.

In the descriptions below, ITEM represents the symbolic name of a

parameter that has been assembled into the item Table. All DEBUG operations

with simulation parameters are prefixed with the symbol %'4. Parameter

values are displayed in the mode specified in the Item Table entry for the

parameter. When a carriage return is typed, DEBUG is restored to its

former mode. The error message '??'will be typed in the following

situations:

- after (W, if there is no Item Table

- after the command, if ITEM is not on the Table

- after a new value is entered, if that value is outside the allowed
ranae for the ITEM. In this case the original value is unchanged
and i3 re-displayed by DEBUG.

Command: (a ITEM/

Action:'

Display the first data value of ITEM in the proper mode. If

ITEM comprises several data words, successive values may be

examined or altered using the usual DEBUG commands (comma,

semicolon, and colon).

124

Exampl-s:t

OMxXX/00. 0 Item 3CXXX has value 100.

11000/WýA 100 c. r. 1. f. Examine location 1000 in
instruction mode.

=XXXX10O. 0 50 c. r. 1. f. Change XXXX to 50.

1000/WDA 100 Instruction mode is restored.

@YYZZ/? ?c. r.l.f. Item YYZZ not found on Table.

(MYY/I. 234; The first data value of YY is
1.234.

174/5.678 6.0; (Note that trailing blanks in the
item name need not be typed.)

175/9.012 10;??c.r.l.f. The second data value is chanced
175/9.012 to 6.0 (This value happns to be

012stored in location 174.) An
attempt is made to change the third
data value of YY to 10, but this
value exceeds the specified
Dmaxixmum.

Command: (i)ITEM$

Action:

Call the CRT display routine associated with ITEM. The routine

will return to DEBUG. Error if no routine has been specified.

Command: (QITEM#

Action:

Re,- rd ITEM on magrnetic tape, and return to DEBUG. (The

tape drive will have been specified prior to execution of the

Simulation Control Program.)

Command: (@ITEM*

Action:

Enter ITEM on the Parameter-Stepping Table. Following the

, DEBUG types '/' and displays the first of the three

successive quantities: starting value, maximum value, step size.

The user may enter or alter any of these quantities. If ITEM is

tIn all examples, underlined characters are those typed by DEBUG. Carriage

return and line feed, if not obvious, are denoted by c. r. and 1. f. respectively.

125

already on the Stepping Table, DEBUG types the previously entered

starting value; if ITEM is not on the Table, the starting value

and the maximum value are set to 0.

There is space for 5 items on the Stepldng Table.t An

error measage is typed if an attempt is made to enter a sixth

item.

Exa.z-iple:

(@KXXX-/0. 1, 10, 1.6 Item XXXX will be stepped through
the values 1. 0, 2.6,.... 9.0.

PiXXX*/I. 0000 , I I The maximum stepping value for
XXXX is changed to 11. 0.

Command:

Action:

Clear the entire Parameter Stepping Table. (Individual items

cannot be deleted from the table.) Restarting DEBUG clears

both the Stepping Table and the Item Table.

Items on the Stepping Table are handled by the Simulation-Control Program
similar to nested DO loops in FORTRAN, with the first item corresponding
to the innermost loop.

126

B. Simulation Tape Editor

Purpose: To copy selected information from Varian 620/i
tapes written by the simulation program onto tapes
in a format s-itable for printing on the IBM 360.

Programmer: C. D. Cappello - January 1971

Input Parameters: Input parameter libts are requested by the following
messages lkyy'd by the program. If there is more
than one entr f" !or a parameter list, the entries are
separated by cotmmas. A carriage return terminates
each list; a carriage return with no entries indicates
default values are to be used.

I. INPUT TAPE - tape drive (0-3) holding input tape.
Drive must 1be specified before program can continue.

2. OUTPUT T, F - output tape and file number.
'5' indicates The listing is to be suppressed.
'N' indicates thie next file from a previously
specified tape tnd file number. Default value is
next filb if, or. dte previous run, an 'N' was typed
or a tape and file number were typed; default value
is suppress listing initially or if, on the previous
run, an 'S' was ,typed.

3. DATA ITEMS a list of characters identifying
items to be printed. Only the first 4 characters
in each entry are recognized. Any number of
items may be specified. Default value is all items.

4. TYPES - a list of type codes to be printed. Default
value is all types.

5. PROGRAM NUMBERS - a list of program numbers
to be printed. Default value is all numbers.

6. START AND STOP NOS - only information from
runs between these numbers is printed. Default
values are 1 and 777778.

7. FREQUENCY OF PRINTOUT - this number is used
with reference to the first item in the data item list and
permits the user tr print a sampling of the tape at
regular intervals. All occurrences of the specified
data up to but not including the second appearance
of the first item in the input item list are printed.
All copying ceases until the first item appears k
more times, where k is the number entered for
this parametc- r. Thereafter, copying proceeds as
usual until the next occurrence of the first item and
ceases until the kth occurrence &fter that. As an
example, suppose X, Y and Z are items that appear
on the input tape in the following order:

XY, Y,Z, ZZ, X, Y, Y,Z, Z,Xx, Y, Z Z, Z z........
If the frequency is specified as 3, and if X, Y, Z are
inputs in the data item list, the underlined items in the
above sequence are printed. Default value of this
parameter is 1, which indicates that all occurrences
of the specified data are copied.

". 127

Notes on Input Parameters:
A. An item is printed out only if it meets all

requirements in 3-7.

B. IQI or 'R'I may be entered in place of any
numerical input and the program will return to
DEBUG (IQ') or be restarted ('R').

Output: An output tape is written for the IBM 360 consisting
of one file for each set of input parameters. The
output data may also be displayed on the CRT by
enabling SSZ. When a full page has been written the
program waits for the user to t pe the PAGE key
before continuing. A 'Q' or an 'R' causes the
program to terminate normally and then to quit or
restart.

Format of the Printed Output:

Every run is printed starting on a new page. At the
top of every page is printed the run number and the
label information. Label information must be packed

two ASCII characters per word and must be no more
than 30 words. Items are printed with the item name
on one line and the data on the following lines. The
number of data words per line for an item is specified
in the item table; is zero words per line are specified,
the maximum number of words per line will be printed.
If an error occurred in reading a particular item, an
asterisk will appear before the item name, but the data,
as read, will be printed.

Sense Switch Settings: 1. SS2 on - directs the data to the CRT as well as
writing it on tape. Its setting may be changed at
any time.

2. SS3 on - instructs the program f.j request all input
from the teletype. It must be set prior to the
execution of the program.

Usage: This is a stand alone program requiring an input tape
"written by the simulation program. It first requests
input parameters on the CRT or, if SS3 is on, on the
TTY. It searches the input tape for specified data and
copies this information onto the output tape in a format
suitable for printing on the IBM 360. When either the
specified number of files have been searched or the
logical or physical end-of-tape is reached, the program
rewinds the input tape and requests further input. Output
may be viewed on the CRT when SS2 is on.

Error Messages: 1. ? an invalid character was typed. Re-enter
the argument.

2. *SZ an invalid tape number was entered. Re-enter
the argument.

3. RUN NO. TOO SMALL - the requested starting
run number was smaller than the first run on
the tape. The program is restarted.

4. RUN NOT ON TAPE - the requested starting run

128

number did not occur before the end of tape
file. The program is restarted.

5. WRITE ERROR - either the output tape is offline
or there is no write ring. Only the number
of the output tape must be re-entered before
the program continues.

Remarks: The simulation tape reading routines with no
modification are assembled into this program.

Data Types: The following is a description of data types which
must be specified for each item in the item table.

Type 0 - text. Data is interpreted as two ASCII
characters pir word. A maximum of 130 characters
may be put on a line.

Type 1 - octal, maximum of 10 numbers per line.

Type 2 - fixed point. The position of the binary-
point is specified in the code word. If the binary-
point position is zero, output consists of full-
precision numbers with a maximum of 14 on a line.
Otherwise, output consists of numbers having only
4 significant figures with a maximum of 8 numbers
per line.

Type 3 - binary, maximum of 7 numbers per line.

Type4 - floating point, maximum of 8 numbers
per line.

Type 5 - double precision fixed point. The position
of the binary point is specified in the code word. A
binary-point position of zeri corresponds to the
binary point between the two words. Output consists
of numbers having 4 significant figures with a
maximum of 8 numbers per line.

Type 6 - double precision integer. Output consists
of full precision integers with a maximum of 10
numbers per line.

129

C. Simulation Tape Splicer

Purpose: To zopy a number of files written in simulation system
format from one magnetic tape to another. Copying
begins at a specified run on the output tape and the
copied run numbers are adjusted to follow in numerical
order.

Programmer and Date: C. D. Cappello, June 1971

Input Parameters: Output tape number and run number on the output tape
at which copying is to begin. Also the input tape
number and the numbers of the runs on the input tape
at which the copying is to start and stop.

Sense Switch Settings: SS3 - OFF for operation from the CRT.
ON for operation from the teletype.

Locations Used: 1008 - 102368

Usage: In response to messages written on the CRT screen
(or the teletype), the user enters the following octal
parameters:

OUTPUT TAPE (0-3)
OUTPUT STARTING RUN NO.
INPUT TAPE (0-3)
S TAR T AND S TO P NOS.

In response to the Output Starting Run No. message,
the user must type a '1' if he wishes to copy onto
a new tape. All files between the starting and
stopping run numbers are copied. If no starting and
stopping numbers are entered, but only a carriage
return is typed, all files on the tape prior to the
logical end of tape file are copied. If only a starting
run number is entered, that one run is copied.

When copying of all specified files is completed, the
program asks for a new input tape. Copying will
continue in sequence on the output tape. In place of
any input parameter, an 'R' may be typed and the
program will be restarted.

When copying i. completed, a 'Q' must be typed in
place of one of the input parameters. At this time
a logical end-of-tape file will be written on the output
tape and the user will return to DEBUG.

Error Messages:
- an invalid character was typed (parameter

must be re-entered)

- the parameter entered exceeded allowable size

130

Run No. Too Small

- the specified output starting ruxi number is

less than the first run on the tape.

Run Not on Tape

- the specified output starting run number is
greater than one larger than the last run on
the tape.

Error Pos. Output Tape

- an error occurred in positioning the output
tape at the specified run.

Fix Output Tape

- the output tape is offline or not write enabled.
The program pauses for the tape to be fixed;
a 'C' will continue the program.

Write Error

- an error occurred it, writing on the output
tape but the program continues.

End of Output. Tape

the physical end of tape has been reached.
The program is restarted.

Parity

- a parity error has occurred in reading the
input tape. Five tries are made before the
mesL•Fge is typed. The program continues with
the data as read.

Input Tape Offline

- the program pauses for the tape to be fixed.
Typing a IC continues the program.

Read Error

- an error other than the above two occurred.
Five attempts are made to read the record before
the program continues with the data as read.

131

D. Miscellaneous

The features and routines below are well enough commented in

the listing that a brief description is adequate. For more complete infor-

mation, reference should be made to the listings.

ITEM TABLE A table which establishes mnemonic identifica-
tion of parameters and data to facilitate
communication among the user, the Simulation
program, and DEBUG.

PROGRAM TABLE A table which determines the sequential order
in which programs are to be executed.

RECORD TABLE A table of item names which are recorded
automatically on tape.

STEPPING TABLE A table which allows the Control Program to
vary parameter values as if they were placed
into nested do-loops (see Section V,A).

SPECIAL STEP A feature by which the Control Program can
step parameters when 1) parameters are not
identified in item table, 2) parameter values
are not uniformly increased, or 3) multiple
parameters are to be changed at one time.

TAPE READ Special tape-handling routines used by the
TAPE WRITE Control Program. The read package is double

buffered to minimize the time involved in data
transfers, whereas the write package is single

• buffered, since maximum throughput rate is

-not needed for recording output data consisting
of input parameters and performance statistics.

MULTICHIP Subroutine to accumulate, store, and plot
Fourier transforms of data which is generated
in chip-length buffers.

DECO EDIT A special routine which allows the user to edit
out specific parts of a simulation output tape.

132

